These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33197195)

  • 1. Fractal Model for Drag Reduction on Multiscale Nonwetting Rough Surfaces.
    Hatte S; Pitchumani R
    Langmuir; 2020 Dec; 36(47):14386-14402. PubMed ID: 33197195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal Model for Wettability of Rough Surfaces.
    Jain R; Pitchumani R
    Langmuir; 2017 Jul; 33(28):7181-7190. PubMed ID: 28635291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.
    Zhang J; Yao Z; Hao P
    Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical model for drag reduction on liquid-infused structured non-wetting surfaces.
    Hatte S; Pitchumani R
    Soft Matter; 2021 Feb; 17(5):1388-1403. PubMed ID: 33325970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.
    Tanvir Ahmmed KM; Kietzig AM
    Soft Matter; 2016 Jun; 12(22):4912-22. PubMed ID: 27146256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction.
    Brennan JC; Geraldi NR; Morris RH; Fairhurst DJ; McHale G; Newton MI
    Sci Rep; 2015 May; 5():10267. PubMed ID: 25975704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces.
    Xiang Y; Xue Y; Lv P; Li D; Duan H
    Soft Matter; 2016 May; 12(18):4241-6. PubMed ID: 27071538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of freezing of a sessile water droplet on surfaces over a range of wettability.
    Fuller A; Kant K; Pitchumani R
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):960-970. PubMed ID: 37776723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theory for the slip and drag of superhydrophobic surfaces with surfactant.
    Landel JR; Peaudecerf FJ; Temprano-Coleto F; Gibou F; Goldstein RE; Luzzatto-Fegiz P
    J Fluid Mech; 2020 Jan; 883():. PubMed ID: 31806916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces.
    Lee E; Müller-Plathe F
    J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures.
    Nizkaya TV; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice?
    Zhu Y; Yang F; Guo Z
    Nanoscale; 2021 Feb; 13(6):3463-3482. PubMed ID: 33566874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drag reduction on a patterned superhydrophobic surface.
    Truesdell R; Mammoli A; Vorobieff P; van Swol F; Brinker CJ
    Phys Rev Lett; 2006 Jul; 97(4):044504. PubMed ID: 16907578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol.
    Li Y; Pan Y; Zhao X
    Beilstein J Nanotechnol; 2017; 8():2504-2514. PubMed ID: 29259865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant drag reduction in complex fluid drops on rough hydrophobic surfaces.
    Luu LH; Forterre Y
    Phys Rev Lett; 2013 May; 110(18):184501. PubMed ID: 23683201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating Superhydrophobic Surfaces under External Pressures using Quartz Crystal Microbalance.
    Esmaeilzadeh H; Zheng K; Barry C; Mead J; Charmchi M; Sun H
    Langmuir; 2021 Jun; 37(22):6650-6659. PubMed ID: 34038126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.