BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33197275)

  • 1. Thermal effects of percutaneous application of plasma/radiofrequency energy on porcine dermis and fibroseptal network.
    Ruff PG
    J Cosmet Dermatol; 2021 Jul; 20(7):2125-2131. PubMed ID: 33197275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive thermal tissue reactions of 7-MHz intense focused ultrasound and 1-MHz and 6-MHz radiofrequency on cadaveric skin.
    Kim H; Ahn KJ; Lee S; Park H; Cho SB
    Skin Res Technol; 2019 Mar; 25(2):171-178. PubMed ID: 30320473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A focused monopolar radiofrequency causes apoptosis: a porcine model.
    McDaniel D; Fritz K; Machovcova A; Bernardy J
    J Drugs Dermatol; 2014 Nov; 13(11):1336-40. PubMed ID: 25607699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal profile of radiofrequency energy in the inferior glenohumeral ligament.
    Liao WL; Hedman TP; Vangsness CT
    Arthroscopy; 2004 Jul; 20(6):603-8. PubMed ID: 15241311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Computational and Experimental Study to Compare the Effectiveness of Bipolar Mode With Phase-Shift Angle Mode in Radiofrequency Fat Dissolution on Subcutaneous Tissue.
    Lianru Z; Yu Z; Jia K; Yinmin X; ChengLi S
    Lasers Surg Med; 2021 Dec; 53(10):1395-1412. PubMed ID: 34036607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiofrequency energy-induced heating of bovine capsular tissue: Temperature changes produced by bipolar versus monopolar electrodes.
    Shellock FG
    Arthroscopy; 2001 Feb; 17(2):124-31. PubMed ID: 11172240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiofrequency energy induced heating of bovine capsular tissue: in vitro assessment of newly developed, temperature-controlled monopolar and bipolar radiofrequency electrodes.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2002 Jul; 10(4):254-9. PubMed ID: 12211186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Radiofrequency : Monopolar, bipolar, multipolar and fractional].
    Fritz K; Tiplica GS; Salavastru C
    Dermatologie (Heidelb); 2023 Oct; 74(10):740-747. PubMed ID: 37581701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Subdermal Monopolar RF Energy on Abdominoplasty Flaps.
    Ferguson J
    J Drugs Dermatol; 2016 Jan; 15(1):55-8. PubMed ID: 26741382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Combination of Different Electrode Spacings and Power on Bipolar Radiofrequency Fat Dissolution: A Computational and Experimental Study.
    Zang L; Zhou Y; Kang J; Song C
    Lasers Surg Med; 2020 Dec; 52(10):1020-1031. PubMed ID: 32342532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature.
    Rehman J; Landman J; Lee D; Venkatesh R; Bostwick DG; Sundaram C; Clayman RV
    J Endourol; 2004 Feb; 18(1):83-104. PubMed ID: 15006061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo histological evaluation of non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode.
    Harth Y; Frank I
    J Drugs Dermatol; 2013 Dec; 12(12):1430-3. PubMed ID: 24301245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflammatory effect of monopolar radiofrequency treatment on collagen fibrils in rabbit skins.
    Choi S; Cheong Y; Shin JH; Jin KH; Park HK
    J Biomed Nanotechnol; 2013 Aug; 9(8):1403-7. PubMed ID: 23926808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological evaluation of monopolar and bipolar radiofrequency microneedling treatment in a porcine model.
    Wang H; Hamblin MR; Zhang Y; Xu Y; Wen X
    Lasers Surg Med; 2024 Mar; 56(3):288-297. PubMed ID: 38334177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring channeling optimized radiofrequency energy: a review of radiofrequency history and applications in esthetic fields.
    Belenky I; Margulis A; Elman M; Bar-Yosef U; Paun SD
    Adv Ther; 2012 Mar; 29(3):249-66. PubMed ID: 22382873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical evaluation of simultaneously applied monopolar radiofrequency and targeted pressure energy as a new method for noninvasive treatment of cellulite in postpubertal women.
    Fritz K; Salavastru C; Gyurova M
    J Cosmet Dermatol; 2018 Jun; 17(3):361-364. PubMed ID: 29524305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction and overview of radiofrequency treatments in aesthetic dermatology.
    Delgado AR; Chapas A
    J Cosmet Dermatol; 2022 Oct; 21 Suppl 1():S1-S10. PubMed ID: 36459080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Thermal Effects of J-Plasma®, Monopolar, Argon, and Laser Electrosurgery in a Porcine Tissue Model.
    Masghati S; Pedroso J; Gutierrez M; Stockwell E; Volker KW; Howard DL
    Surg Technol Int; 2019 May; 34():35-39. PubMed ID: 30825320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Center Pilot Study to Evaluate the Safety Profile of High Energy Fractionated Radiofrequency With Insulated Microneedles to Multiple Levels of the Dermis.
    Cohen JL; Weiner SF; Pozner JN; Ibrahimi OA; Vasily DB; Ross EV; Gabriel Z
    J Drugs Dermatol; 2016 Nov; 15(11):1308-1312. PubMed ID: 28095540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2001 Nov; 9(6):392-7. PubMed ID: 11734879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.