BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33197282)

  • 1. The high catalytic rate of the cold-active Vibrio alkaline phosphatase requires a hydrogen bonding network involving a large interface loop.
    Hjörleifsson JG; Helland R; Magnúsdóttir M; Ásgeirsson B
    FEBS Open Bio; 2021 Jan; 11(1):173-184. PubMed ID: 33197282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 1.4 A crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase.
    Helland R; Larsen RL; Asgeirsson B
    Biochim Biophys Acta; 2009 Feb; 1794(2):297-308. PubMed ID: 18977465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.
    Hjörleifsson JG; Ásgeirsson B
    Biochemistry; 2017 Sep; 56(38):5075-5089. PubMed ID: 28829580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure of cold-adapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence.
    Asgeirsson B; Andrésson OS
    Biochim Biophys Acta; 2001 Sep; 1549(1):99-111. PubMed ID: 11566372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.
    Hjörleifsson JG; Ásgeirsson B
    Biochim Biophys Acta; 2016 Jul; 1864(7):755-65. PubMed ID: 27043172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride promotes refolding of active
    Hjörleifsson JG; Ásgeirsson B
    FEBS Open Bio; 2019 Jan; 9(1):169-184. PubMed ID: 30652084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics fingerprint and inherent asymmetric flexibility of a cold-adapted homodimeric enzyme. A case study of the Vibrio alkaline phosphatase.
    Papaleo E; Renzetti G; Invernizzi G; Asgeirsson B
    Biochim Biophys Acta; 2013 Apr; 1830(4):2970-80. PubMed ID: 23266619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium.
    Russell RJ; Gerike U; Danson MJ; Hough DW; Taylor GL
    Structure; 1998 Mar; 6(3):351-61. PubMed ID: 9551556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.
    Brocca S; Ferrari C; Barbiroli A; Pesce A; Lotti M; Nardini M
    FEBS J; 2016 Dec; 283(23):4310-4324. PubMed ID: 27739253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.
    Asgeirsson B; Adalbjörnsson BV; Gylfason GA
    Biochim Biophys Acta; 2007 Jun; 1774(6):679-87. PubMed ID: 17493882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.
    Truongvan N; Jang SH; Lee C
    Biochemistry; 2016 Jun; 55(25):3542-9. PubMed ID: 27259687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of cold-active alkaline phosphatase from the psychrophile Shewanella sp.
    Tsuruta H; Mikami B; Higashi T; Aizono Y
    Biosci Biotechnol Biochem; 2010; 74(1):69-74. PubMed ID: 20057143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli.
    Gudjónsdóttir K; Asgeirsson B
    FEBS J; 2008 Jan; 275(1):117-27. PubMed ID: 18067583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation and unfolding of cold-active alkaline phosphatase from atlantic cod in the presence of guanidinium chloride.
    Asgeirsson B; Hauksson JB; Gunnarsson GH
    Eur J Biochem; 2000 Nov; 267(21):6403-12. PubMed ID: 11029583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy.
    Heidarsson PO; Sigurdsson ST; Asgeirsson B
    FEBS J; 2009 May; 276(10):2725-35. PubMed ID: 19368558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability.
    Borges B; Gallo G; Coelho C; Negri N; Maiello F; Hardy L; Würtele M
    Biochim Biophys Acta Gen Subj; 2021 Jul; 1865(7):129895. PubMed ID: 33781823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Characterization of Functionally Important Chloride Binding Sites in the Marine
    Markússon S; Hjörleifsson JG; Kursula P; Ásgeirsson B
    Biochemistry; 2022 Oct; 61(20):2248-2260. PubMed ID: 36194497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.
    Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV
    PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.