These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33198074)
1. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Ryu JH; Kang TY; Shin H; Kim KM; Hong MH; Kwon JS Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198074 [TBL] [Abstract][Full Text] [Related]
2. Sustained Delivery of Methylsulfonylmethane from Biodegradable Scaffolds Enhances Efficient Bone Regeneration. Guo Y; Li P; Wang Z; Zhang P; Wu X Int J Nanomedicine; 2022; 17():4829-4842. PubMed ID: 36246935 [TBL] [Abstract][Full Text] [Related]
3. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Xie Y; Sun W; Yan F; Liu H; Deng Z; Cai L Int J Nanomedicine; 2019; 14():6019-6033. PubMed ID: 31534334 [TBL] [Abstract][Full Text] [Related]
4. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
5. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
6. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. Kim BS; Yang SS; Lee J J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):943-51. PubMed ID: 24259295 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. Gu Y; Bai Y; Zhang D J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937 [TBL] [Abstract][Full Text] [Related]
8. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586 [TBL] [Abstract][Full Text] [Related]
9. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Mou P; Peng H; Zhou L; Li L; Li H; Huang Q Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401 [No Abstract] [Full Text] [Related]
10. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration. Hadavi M; Hasannia S; Faghihi S; Mashayekhi F; Zadeh HH; Mostofi SB Biochem Biophys Res Commun; 2017 Jul; 488(4):671-678. PubMed ID: 28302485 [TBL] [Abstract][Full Text] [Related]
11. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
13. Drug-loading three-dimensional scaffolds based on hydroxyapatite-sodium alginate for bone regeneration. Liang T; Wu J; Li F; Huang Z; Pi Y; Miao G; Ren W; Liu T; Jiang Q; Guo L J Biomed Mater Res A; 2021 Feb; 109(2):219-231. PubMed ID: 32490561 [TBL] [Abstract][Full Text] [Related]
14. Poly(l-Lactic Acid)/Gelatin Fibrous Scaffold Loaded with Simvastatin/Beta-Cyclodextrin-Modified Hydroxyapatite Inclusion Complex for Bone Tissue Regeneration. Lee JB; Kim JE; Balikov DA; Bae MS; Heo DN; Lee D; Rim HJ; Lee DW; Sung HJ; Kwon IK Macromol Biosci; 2016 Jul; 16(7):1027-38. PubMed ID: 26996294 [TBL] [Abstract][Full Text] [Related]
15. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. Zhou K; Yu P; Shi X; Ling T; Zeng W; Chen A; Yang W; Zhou Z ACS Nano; 2019 Aug; 13(8):9595-9606. PubMed ID: 31381856 [TBL] [Abstract][Full Text] [Related]
16. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
17. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related]
18. MSM promotes human periodontal ligament stem cells differentiation to osteoblast and bone regeneration. Ha SH; Choung PH Biochem Biophys Res Commun; 2020 Jul; 528(1):160-167. PubMed ID: 32466845 [TBL] [Abstract][Full Text] [Related]
19. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
20. The impact of various scaffold components on vascularized bone constructs. Eweida A; Schulte M; Frisch O; Kneser U; Harhaus L J Craniomaxillofac Surg; 2017 Jun; 45(6):881-890. PubMed ID: 28344026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]