These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33198391)

  • 21. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis.
    Xiao JD; Jiang HL
    Acc Chem Res; 2019 Feb; 52(2):356-366. PubMed ID: 30571078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis.
    An T; Wen J; Dong Z; Zhang Y; Zhang J; Qin F; Wang Y; Zhao X
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic Photocatalysis for CO
    Wang F; Lu Z; Guo H; Zhang G; Li Y; Hu Y; Jiang W; Liu G
    Chemistry; 2023 May; 29(25):e202202716. PubMed ID: 36806292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.
    Meng X; Liu L; Ouyang S; Xu H; Wang D; Zhao N; Ye J
    Adv Mater; 2016 Aug; 28(32):6781-803. PubMed ID: 27185493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics.
    Kamat PV
    J Phys Chem Lett; 2013 Mar; 4(6):908-18. PubMed ID: 26291355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment.
    Lu Y; Zhang H; Fan D; Chen Z; Yang X
    J Hazard Mater; 2022 Feb; 423(Pt B):127128. PubMed ID: 34534804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.
    Wang W; Tadé MO; Shao Z
    Chem Soc Rev; 2015 Aug; 44(15):5371-408. PubMed ID: 25976276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling.
    Zhu L; Tian L; Jiang S; Han L; Liang Y; Li Q; Chen S
    Chem Soc Rev; 2023 Oct; 52(21):7389-7460. PubMed ID: 37743823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Nanophotonics Approaches for Enhancing the Efficiency and Stability of Perovskite Solar Cells.
    Cheng P; An Y; Jen AK; Lei D
    Adv Mater; 2024 Apr; 36(17):e2309459. PubMed ID: 37878233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of morphological evolution and aggregation of plasmonic core-shell nanostructures on solar thermal conversion.
    Xing L; Wang R; Ha Y; Li Z
    Appl Opt; 2023 Jul; 62(19):5195-5201. PubMed ID: 37707223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photon management to reduce energy loss in perovskite solar cells.
    Chen C; Zheng S; Song H
    Chem Soc Rev; 2021 Jun; 50(12):7250-7329. PubMed ID: 33977928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic harvesting of light energy for Suzuki coupling reactions.
    Wang F; Li C; Chen H; Jiang R; Sun LD; Li Q; Wang J; Yu JC; Yan CH
    J Am Chem Soc; 2013 Apr; 135(15):5588-601. PubMed ID: 23521598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Dimensional Plasmonic Nanostructure Design for Boosting Photoelectrochemical Activity.
    Xu R; Wen L; Wang Z; Zhao H; Xu S; Mi Y; Xu Y; Sommerfeld M; Fang Y; Lei Y
    ACS Nano; 2017 Jul; 11(7):7382-7389. PubMed ID: 28671810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine.
    Zhou X; Lin S; Yan H
    J Nanobiotechnology; 2022 Jun; 20(1):257. PubMed ID: 35658974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing.
    Tian J; Zhu H; Chen J; Zheng X; Duan H; Pu K; Chen P
    Small; 2017 Jun; 13(22):. PubMed ID: 28445007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
    Long R; Li Y; Song L; Xiong Y
    Small; 2015 Aug; 11(32):3873-89. PubMed ID: 26097101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical Processes behind Plasmonic Applications.
    Babicheva VE
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.