These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 33198814)
1. Natural language processing algorithms for mapping clinical text fragments onto ontology concepts: a systematic review and recommendations for future studies. Kersloot MG; van Putten FJP; Abu-Hanna A; Cornet R; Arts DL J Biomed Semantics; 2020 Nov; 11(1):14. PubMed ID: 33198814 [TBL] [Abstract][Full Text] [Related]
2. Ensembles of natural language processing systems for portable phenotyping solutions. Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273 [TBL] [Abstract][Full Text] [Related]
3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
4. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599 [TBL] [Abstract][Full Text] [Related]
5. Systematic review of current natural language processing methods and applications in cardiology. Reading Turchioe M; Volodarskiy A; Pathak J; Wright DN; Tcheng JE; Slotwiner D Heart; 2022 May; 108(12):909-916. PubMed ID: 34711662 [TBL] [Abstract][Full Text] [Related]
6. Natural language processing to identify lupus nephritis phenotype in electronic health records. Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189 [TBL] [Abstract][Full Text] [Related]
7. Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for Processing Free Text in Health Care: Systematic Scoping Review. Gaudet-Blavignac C; Foufi V; Bjelogrlic M; Lovis C J Med Internet Res; 2021 Jan; 23(1):e24594. PubMed ID: 33496673 [TBL] [Abstract][Full Text] [Related]
8. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
9. Identification of Preanesthetic History Elements by a Natural Language Processing Engine. Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317 [TBL] [Abstract][Full Text] [Related]
10. Development and evaluation of task-specific NLP framework in China. Ge C; Zhang Y; Huang Z; Jia Z; Ju M; Duan H; Li H Stud Health Technol Inform; 2015; 216():1031. PubMed ID: 26262331 [TBL] [Abstract][Full Text] [Related]
11. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
12. Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents? Karhade AV; Oosterhoff JHF; Groot OQ; Agaronnik N; Ehresman J; Bongers MER; Jaarsma RL; Poonnoose SI; Sciubba DM; Tobert DG; Doornberg JN; Schwab JH Clin Orthop Relat Res; 2022 Sep; 480(9):1766-1775. PubMed ID: 35412473 [TBL] [Abstract][Full Text] [Related]
13. Comparative study using inverse ontology cogency and alternatives for concept recognition in the annotated National Library of Medicine database. Shannon GJ; Rayapati N; Corns SM; Wunsch DC Neural Netw; 2021 Jul; 139():86-104. PubMed ID: 33684612 [TBL] [Abstract][Full Text] [Related]
14. Knowledge Author: facilitating user-driven, domain content development to support clinical information extraction. Scuba W; Tharp M; Mowery D; Tseytlin E; Liu Y; Drews FA; Chapman WW J Biomed Semantics; 2016 Jun; 7(1):42. PubMed ID: 27338146 [TBL] [Abstract][Full Text] [Related]
15. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557 [TBL] [Abstract][Full Text] [Related]
16. Extracting cancer concepts from clinical notes using natural language processing: a systematic review. Gholipour M; Khajouei R; Amiri P; Hajesmaeel Gohari S; Ahmadian L BMC Bioinformatics; 2023 Oct; 24(1):405. PubMed ID: 37898795 [TBL] [Abstract][Full Text] [Related]
17. Ontology-driven and weakly supervised rare disease identification from clinical notes. Dong H; Suárez-Paniagua V; Zhang H; Wang M; Casey A; Davidson E; Chen J; Alex B; Whiteley W; Wu H BMC Med Inform Decis Mak; 2023 May; 23(1):86. PubMed ID: 37147628 [TBL] [Abstract][Full Text] [Related]
18. Deep learning in clinical natural language processing: a methodical review. Wu S; Roberts K; Datta S; Du J; Ji Z; Si Y; Soni S; Wang Q; Wei Q; Xiang Y; Zhao B; Xu H J Am Med Inform Assoc; 2020 Mar; 27(3):457-470. PubMed ID: 31794016 [TBL] [Abstract][Full Text] [Related]
19. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records. Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693 [TBL] [Abstract][Full Text] [Related]
20. Natural language processing and String Metric-assisted Assessment of Semantic Heterogeneity method for capturing and standardizing unstructured nursing activities in a hospital setting: a retrospective study. Vanalli M; Cesare M; Cocchieri A; D'Agostino F Ann Ig; 2023; 35(1):3-20. PubMed ID: 35403664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]