These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 33198947)
1. Tryptophan Oxidation of a Monoclonal Antibody Under Diverse Oxidative Stress Conditions: Distinct Oxidative Pathways Favor Specific Tryptophan Residues. Jacobitz AW; Liu Q; Suravajjala S; Agrawal NJ J Pharm Sci; 2021 Feb; 110(2):719-726. PubMed ID: 33198947 [TBL] [Abstract][Full Text] [Related]
2. Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative Stress and Modeling Prediction. Pavon JA; Xiao L; Li X; Zhao J; Aldredge D; Dank E; Fridman A; Liu YH Anal Chem; 2019 Feb; 91(3):2192-2200. PubMed ID: 30608647 [TBL] [Abstract][Full Text] [Related]
3. Selective Oxidation of Methionine and Tryptophan Residues in a Therapeutic IgG1 Molecule. Folzer E; Diepold K; Bomans K; Finkler C; Schmidt R; Bulau P; Huwyler J; Mahler HC; Koulov AV J Pharm Sci; 2015 Sep; 104(9):2824-31. PubMed ID: 26010344 [TBL] [Abstract][Full Text] [Related]
4. Characterization by LC-MS/MS of oxidized products identified in synthetic peptide somatostatin and cetrorelix submitted to forced oxidative stress by hydrogen peroxide: Two case studies. Datola A; Pistacchio A; Simone P; Colarusso L; Melchiorre M; Rinaldi G; Amidi M; Politi J; Angiuoni G J Mass Spectrom; 2023 May; 58(5):e4919. PubMed ID: 37130582 [TBL] [Abstract][Full Text] [Related]
5. Liquid chromatography-fluorescence and liquid chromatography-mass spectrometry detection of tryptophan degradation products of a recombinant monoclonal antibody. Nowak C; Ponniah G; Cheng G; Kita A; Neill A; Kori Y; Liu H Anal Biochem; 2016 Mar; 496():4-8. PubMed ID: 26717898 [TBL] [Abstract][Full Text] [Related]
6. High throughput peptide mapping method for analysis of site specific monoclonal antibody oxidation. Li X; Xu W; Wang Y; Zhao J; Liu YH; Richardson D; Li H; Shameem M; Yang X J Chromatogr A; 2016 Aug; 1460():51-60. PubMed ID: 27432793 [TBL] [Abstract][Full Text] [Related]
7. Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-butylhydroperoxide and quantitative LC-MS. Hensel M; Steurer R; Fichtl J; Elger C; Wedekind F; Petzold A; Schlothauer T; Molhoj M; Reusch D; Bulau P PLoS One; 2011 Mar; 6(3):e17708. PubMed ID: 21390239 [TBL] [Abstract][Full Text] [Related]
8. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography. Pavon JA; Li X; Chico S; Kishnani U; Soundararajan S; Cheung J; Li H; Richardson D; Shameem M; Yang X J Chromatogr A; 2016 Jan; 1431():154-165. PubMed ID: 26774436 [TBL] [Abstract][Full Text] [Related]
9. Characterization of N-Acetyl-Tryptophan Degradation in Protein Therapeutic Formulations. Hogan KL; Leiske D; Salisbury CM J Pharm Sci; 2017 Dec; 106(12):3499-3506. PubMed ID: 28844684 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the degradation products of a color-changed monoclonal antibody: tryptophan-derived chromophores. Li Y; Polozova A; Gruia F; Feng J Anal Chem; 2014 Jul; 86(14):6850-7. PubMed ID: 24937252 [TBL] [Abstract][Full Text] [Related]
11. Determination of tryptophan oxidation of monoclonal antibody by reversed phase high performance liquid chromatography. Yang J; Wang S; Liu J; Raghani A J Chromatogr A; 2007 Jul; 1156(1-2):174-82. PubMed ID: 17379231 [TBL] [Abstract][Full Text] [Related]
12. Impact of Tryptophan Oxidation in Complementarity-Determining Regions of Two Monoclonal Antibodies on Structure-Function Characterized by Hydrogen-Deuterium Exchange Mass Spectrometry and Surface Plasmon Resonance. Hageman T; Wei H; Kuehne P; Fu J; Ludwig R; Tao L; Leone A; Zocher M; Das TK Pharm Res; 2018 Dec; 36(1):24. PubMed ID: 30536043 [TBL] [Abstract][Full Text] [Related]
13. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. Yang R; Jain T; Lynaugh H; Nobrega RP; Lu X; Boland T; Burnina I; Sun T; Caffry I; Brown M; Zhi X; Lilov A; Xu Y MAbs; 2017; 9(4):646-653. PubMed ID: 28281887 [TBL] [Abstract][Full Text] [Related]
14. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Sreedhara A; Lau K; Li C; Hosken B; Macchi F; Zhan D; Shen A; Steinmann D; Schöneich C; Lentz Y Mol Pharm; 2013 Jan; 10(1):278-88. PubMed ID: 23136850 [TBL] [Abstract][Full Text] [Related]
15. Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress. Fedorova M; Todorovsky T; Kuleva N; Hoffmann R Proteomics; 2010 Jul; 10(14):2692-700. PubMed ID: 20455213 [TBL] [Abstract][Full Text] [Related]
16. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. Ji JA; Zhang B; Cheng W; Wang YJ J Pharm Sci; 2009 Dec; 98(12):4485-500. PubMed ID: 19455640 [TBL] [Abstract][Full Text] [Related]
17. Unique Impacts of Methionine Oxidation, Tryptophan Oxidation, and Asparagine Deamidation on Antibody Stability and Aggregation. Alam ME; Slaney TR; Wu L; Das TK; Kar S; Barnett GV; Leone A; Tessier PM J Pharm Sci; 2020 Jan; 109(1):656-669. PubMed ID: 31678251 [TBL] [Abstract][Full Text] [Related]
18. Development of a high throughput oxidation profiling strategy for monoclonal antibody products. Fischer P; Merkel OM; Siedler M; Huelsmeyer M Eur J Pharm Biopharm; 2024 Jun; 199():114301. PubMed ID: 38677563 [TBL] [Abstract][Full Text] [Related]
19. The Use of a 2,2'-Azobis (2-Amidinopropane) Dihydrochloride Stress Model as an Indicator of Oxidation Susceptibility for Monoclonal Antibodies. Dion MZ; Wang YJ; Bregante D; Chan W; Andersen N; Hilderbrand A; Leiske D; Salisbury CM J Pharm Sci; 2018 Feb; 107(2):550-558. PubMed ID: 28989015 [TBL] [Abstract][Full Text] [Related]
20. Mitigation of Oxidation in Therapeutic Antibody Formulations: a Biochemical Efficacy and Safety Evaluation of N-Acetyl-Tryptophan and L-Methionine. Dion MZ; Leiske D; Sharma VK; Zuch de Zafra CL; Salisbury CM Pharm Res; 2018 Oct; 35(11):222. PubMed ID: 30280329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]