BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33199122)

  • 1. Ag@WS
    Song Y; Huang HC; Lu W; Li N; Su J; Cheng SB; Lai Y; Chen J; Zhan J
    Food Chem; 2021 May; 344():128570. PubMed ID: 33199122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram.
    Zhang L; Wang B; Zhu G; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():411-6. PubMed ID: 24973781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag-modified CuO cavity arrays as a SERS-electrochemical dual signal platform for thiram detection.
    Shao X; Zhao Q; Xia J; Xie M; Li Q; Tang Y; Gu X; Ning X; Geng S; Fu J; Tian S
    Talanta; 2024 Jul; 274():125989. PubMed ID: 38537357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.
    Silva de Almeida F; Bussler L; Marcio Lima S; Fiorucci AR; da Cunha Andrade LH
    Appl Spectrosc; 2016 Jul; 70(7):1157-64. PubMed ID: 27279502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants.
    Alyami A; Quinn AJ; Iacopino D
    Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram.
    Wang B; Zhang L; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():63-9. PubMed ID: 24220671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements.
    Lin S; Lin X; Han S; Liu Y; Hasi W; Wang L
    Anal Chim Acta; 2020 Apr; 1108():167-176. PubMed ID: 32222238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L; Jiang C; Zhang Z
    Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water.
    Fateixa S; Raposo M; Nogueira HIS; Trindade T
    Talanta; 2018 May; 182():558-566. PubMed ID: 29501193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce.
    Asgari S; Sun L; Lin J; Weng Z; Wu G; Zhang Y; Lin M
    Mikrochim Acta; 2020 Jun; 187(7):390. PubMed ID: 32548791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels.
    Zhu Y; Li M; Yu D; Yang L
    Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy.
    Pu H; Huang Z; Xu F; Sun DW
    Food Chem; 2021 May; 343():128548. PubMed ID: 33221103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The time-resolved D-SERS vibrational spectra of pesticide thiram.
    Li P; Liu H; Yang L; Liu J
    Talanta; 2013 Dec; 117():39-44. PubMed ID: 24209307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique.
    Feng Y; Wang X; Chang Y; Guo J; Wang C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):116-128. PubMed ID: 35987151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice.
    Sun L; Yu Z; Lin M
    Analyst; 2019 Aug; 144(16):4820-4825. PubMed ID: 31282496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram.
    Xu F; Shang W; Xuan M; Ma G; Ben Z
    Chemosphere; 2022 Feb; 288(Pt 3):132635. PubMed ID: 34687679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables.
    Chen J; Huang M; Kong L; Lin M
    Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate.
    Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.