BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33199684)

  • 21. The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute proteins.
    Ehses J; Schlegel M; Schröger L; Schieweck R; Derdak S; Bilban M; Bauer K; Harner M; Kiebler MA
    Nucleic Acids Res; 2022 Jul; 50(12):7034-7047. PubMed ID: 35687120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA.
    Maniataki E; Mourelatos Z
    Genes Dev; 2005 Dec; 19(24):2979-90. PubMed ID: 16357216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A potential link between transgene silencing and poly(A) tails.
    Siomi MC; Tsukumo H; Ishizuka A; Nagami T; Siomi H
    RNA; 2005 Jul; 11(7):1004-11. PubMed ID: 15987811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional analyses of phosphorylation events in human Argonaute 2.
    Lopez-Orozco J; Pare JM; Holme AL; Chaulk SG; Fahlman RP; Hobman TC
    RNA; 2015 Dec; 21(12):2030-8. PubMed ID: 26443379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition.
    Lykke-Andersen K; Gilchrist MJ; Grabarek JB; Das P; Miska E; Zernicka-Goetz M
    Mol Biol Cell; 2008 Oct; 19(10):4383-92. PubMed ID: 18701707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies.
    Pantazopoulou VI; Georgiou S; Kakoulidis P; Giannakopoulou SN; Tseleni S; Stravopodis DJ; Anastasiadou E
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMDA receptor-dependent dephosphorylation of serine 387 in Argonaute 2 increases its degradation and affects dendritic spine density and maturation.
    Paradis-Isler N; Boehm J
    J Biol Chem; 2018 Jun; 293(24):9311-9325. PubMed ID: 29735530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference.
    Li J; Wu C; Wang W; He Y; Elkayam E; Joshua-Tor L; Hammond PT
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2696-E2705. PubMed ID: 29432194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serine 970 of RNA helicase MOV10 is phosphorylated and controls unfolding activity and fate of mRNAs targeted for AGO2-mediated silencing.
    Nawaz A; Kenny PJ; Shilikbay T; Reed M; Stuchlik O; Pohl J; Ceman S
    J Biol Chem; 2023 Apr; 299(4):104577. PubMed ID: 36871759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs.
    Angart PA; Adu-Berchie K; Carlson RJ; Vocelle DB; Chan C; Walton SP
    Methods Mol Biol; 2019; 1974():41-56. PubMed ID: 31098994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial Disruption of Autophagy Alters Expression of the RISC Component AGO2, a Critical Regulator of the miRNA Silencing Pathway.
    Sibony M; Abdullah M; Greenfield L; Raju D; Wu T; Rodrigues DM; Galindo-Mata E; Mascarenhas H; Philpott DJ; Silverberg MS; Jones NL
    Inflamm Bowel Dis; 2015 Dec; 21(12):2778-86. PubMed ID: 26332312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TAF11 Assembles the RISC Loading Complex to Enhance RNAi Efficiency.
    Liang C; Wang Y; Murota Y; Liu X; Smith D; Siomi MC; Liu Q
    Mol Cell; 2015 Sep; 59(5):807-18. PubMed ID: 26257286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity.
    Rajgor D; Sanderson TM; Amici M; Collingridge GL; Hanley JG
    EMBO J; 2018 Jun; 37(11):. PubMed ID: 29712715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC.
    Horwich MD; Li C; Matranga C; Vagin V; Farley G; Wang P; Zamore PD
    Curr Biol; 2007 Jul; 17(14):1265-72. PubMed ID: 17604629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular biology. Argonaute journeys into the heart of RISC.
    Sontheimer EJ; Carthew RW
    Science; 2004 Sep; 305(5689):1409-10. PubMed ID: 15353786
    [No Abstract]   [Full Text] [Related]  

  • 36. Cellular Approaches in Investigating Argonaute2-Dependent RNA Silencing.
    Zhang C; Seo J; Nakamura T
    Methods Mol Biol; 2018; 1680():205-215. PubMed ID: 29030851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster.
    Rehwinkel J; Natalin P; Stark A; Brennecke J; Cohen SM; Izaurralde E
    Mol Cell Biol; 2006 Apr; 26(8):2965-75. PubMed ID: 16581772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Key elements of the RNAi pathway are regulated by hepatitis B virus replication and HBx acts as a viral suppressor of RNA silencing.
    Chinnappan M; Singh AK; Kakumani PK; Kumar G; Rooge SB; Kumari A; Varshney A; Rastogi A; Singh AK; Sarin SK; Malhotra P; Mukherjee SK; Bhatnagar RK
    Biochem J; 2014 Sep; 462(2):347-58. PubMed ID: 24902849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Tertiary Structure in MicroRNA Target Recognition.
    Gan HH; Gunsalus KC
    Methods Mol Biol; 2019; 1970():43-64. PubMed ID: 30963487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirement for Host RNA-Silencing Components and the Virus-Silencing Suppressor when Second-Site Mutations Compensate for Structural Defects in the 3' Untranslated Region.
    Chattopadhyay M; Stupina VA; Gao F; Szarko CR; Kuhlmann MM; Yuan X; Shi K; Simon AE
    J Virol; 2015 Nov; 89(22):11603-18. PubMed ID: 26355083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.