These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33199727)

  • 1. A modulation-doped heterostructure-based terahertz photoconductive antenna emitter with recessed metal contacts.
    Afalla J; De Los Reyes A; Cabello NI; Vistro VDA; Faustino MA; Ferrolino JP; Prieto EA; Bardolaza H; Catindig GAR; Gonzales KC; Mag-Usara VK; Kitahara H; Somintac AS; Salvador AA; Tani M; Estacio ES
    Sci Rep; 2020 Nov; 10(1):19926. PubMed ID: 33199727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Bow-Tie Antenna Structures for Semi-Insulating GaAs and InP Photoconductive Terahertz Emitters.
    Alfihed S; Foulds IG; Holzman JF
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers.
    Hale LL; Harris CT; Luk TS; Addamane SJ; Reno JL; Brener I; Mitrofanov O
    Opt Lett; 2021 Jul; 46(13):3159-3162. PubMed ID: 34197405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.
    Lee CK; Yang CS; Lin SH; Huang SH; Wada O; Pan CL
    Opt Express; 2011 Nov; 19(24):23689-97. PubMed ID: 22109395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods.
    Bashirpour M; Forouzmehr M; Hosseininejad SE; Kolahdouz M; Neshat M
    Sci Rep; 2019 Feb; 9(1):1414. PubMed ID: 30723252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.
    Yardimci NT; Lu H; Jarrahi M
    Appl Phys Lett; 2016 Nov; 109(19):191103. PubMed ID: 27916999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of terahertz pulse emission by optical nanoantenna.
    Park SG; Jin KH; Yi M; Ye JC; Ahn J; Jeong KH
    ACS Nano; 2012 Mar; 6(3):2026-31. PubMed ID: 22339093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier dynamics of terahertz emission from low-temperature-grown gaas.
    Liu D; Qin J
    Appl Opt; 2003 Jun; 42(18):3678-83. PubMed ID: 12833974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser.
    Kong MS; Kim JS; Han SP; Kim N; Moon K; Park KH; Jeon MY
    Opt Express; 2016 Apr; 24(7):7037-45. PubMed ID: 27136997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Perovskite Terahertz Photoconductive Antenna.
    Obraztsov PA; Bulgakova VV; Chizhov PA; Ushakov AA; Gets DS; Makarov SV; Bukin VV
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33530450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas.
    Hale PJ; Madeo J; Chin C; Dhillon SS; Mangeney J; Tignon J; Dani KM
    Opt Express; 2014 Oct; 22(21):26358-64. PubMed ID: 25401668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced terahertz emission bandwidth from photoconductive antenna by manipulating carrier dynamics of semiconducting substrate with embedded plasmonic metasurface.
    Bhattacharya A; Ghindani D; Prabhu SS
    Opt Express; 2019 Oct; 27(21):30272-30279. PubMed ID: 31684276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance characterization of a self-made terahertz photoconductive antenna.
    Ding J; Li Q; Shen Y; Wu R; Liu X; Ding C; Cui H; Su B; Zhang C
    Appl Opt; 2021 Oct; 60(29):9036-9041. PubMed ID: 34623983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.
    Tani M; Matsuura S; Sakai K; Nakashima S
    Appl Opt; 1997 Oct; 36(30):7853-9. PubMed ID: 18264312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Broadband THz-TDS System Based on DSTMS Emitter and LTG InGaAs/InAlAs Photoconductive Antenna Detector.
    Zhang Y; Zhang X; Li S; Gu J; Li Y; Tian Z; Ouyang C; He M; Han J; Zhang W
    Sci Rep; 2016 May; 6():26949. PubMed ID: 27244689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber Coupled Transceiver with 6.5 THz Bandwidth for Terahertz Time-Domain Spectroscopy in Reflection Geometry.
    Kohlhaas RB; Liebermeister L; Breuer S; Amberg M; Felipe D; Nellen S; Schell M; Globisch B
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz photoconductive antenna based on antireflection dielectric metasurfaces with embedded plasmonic nanodisks.
    Jiang XQ; Fan WH; Song C; Chen X; Wu Q
    Appl Opt; 2021 Sep; 60(26):7921-7928. PubMed ID: 34613051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluence and polarisation dependence of GaAs based Lateral Photo-Dember terahertz emitters.
    McBryde D; Barnes ME; Berry SA; Gow P; Beere HE; Ritchie DA; Apostolopoulos V
    Opt Express; 2014 Feb; 22(3):3234-43. PubMed ID: 24663615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of continuous-wave terahertz wave generation and bias-field-dependent saturation in GaAs:O and LT-GaAs antennas.
    Chen K; Li YT; Yang MH; Cheung WY; Pan CL; Chan KT
    Opt Lett; 2009 Apr; 34(7):935-7. PubMed ID: 19340176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonics-enhanced photoconductive terahertz detector pumped by Ytterbium-doped fiber laser.
    Turan D; Yardimci NT; Jarrahi M
    Opt Express; 2020 Feb; 28(3):3835-3845. PubMed ID: 32122045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.