These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33199746)

  • 1. Design of optical meta-structures with applications to beam engineering using deep learning.
    Singh R; Agarwal A; Anthony BW
    Sci Rep; 2020 Nov; 10(1):19923. PubMed ID: 33199746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse design of photonic meta-structure for beam collimation in on-chip sensing.
    Singh R; Nie Y; Gao M; Agarwal AM; Anthony BW
    Sci Rep; 2021 Mar; 11(1):5343. PubMed ID: 33674688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the design space of photonic topological states via deep learning.
    Singh R; Agarwal A; W Anthony B
    Opt Express; 2020 Sep; 28(19):27893-27902. PubMed ID: 32988072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic waveguide to free-space Gaussian beam extreme mode converter.
    Kim S; Westly DA; Roxworthy BJ; Li Q; Yulaev A; Srinivasan K; Aksyuk VA
    Light Sci Appl; 2018; 7():72. PubMed ID: 30323924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network.
    Li R; Gu X; Shen Y; Li K; Li Z; Zhang Z
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces.
    Mall A; Patil A; Sethi A; Kumar A
    Sci Rep; 2020 Nov; 10(1):19427. PubMed ID: 33173073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Neural Network Inverse Design of Integrated Photonic Power Splitters.
    Tahersima MH; Kojima K; Koike-Akino T; Jha D; Wang B; Lin C; Parsons K
    Sci Rep; 2019 Feb; 9(1):1368. PubMed ID: 30718661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity-modulated radiation therapy.
    Sadeghnejad Barkousaraie A; Ogunmolu O; Jiang S; Nguyen D
    Med Phys; 2020 Mar; 47(3):880-897. PubMed ID: 31868927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indefinite Plasmonic Beam Engineering by In-plane Holography.
    Chen J; Li L; Li T; Zhu SN
    Sci Rep; 2016 Jun; 6():28926. PubMed ID: 27357133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse design of high degree of freedom meta-atoms based on machine learning and genetic algorithm methods.
    Yu R; Liu Y; Zhu L
    Opt Express; 2022 Sep; 30(20):35776-35791. PubMed ID: 36258521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles.
    So S; Mun J; Rho J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures.
    Unni R; Yao K; Zheng Y
    ACS Photonics; 2020 Oct; 7(10):2703-2712. PubMed ID: 38031541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning in Interpolation and Extrapolation for Nanophotonic Inverse Design.
    Acharige D; Johlin E
    ACS Omega; 2022 Sep; 7(37):33537-33547. PubMed ID: 36157720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches.
    Adibnia E; Mansouri-Birjandi MA; Ghadrdan M; Jafari P
    Sci Rep; 2024 Mar; 14(1):5787. PubMed ID: 38461205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning modeling approach for metasurfaces with high degrees of freedom.
    An S; Zheng B; Shalaginov MY; Tang H; Li H; Zhou L; Ding J; Agarwal AM; Rivero-Baleine C; Kang M; Richardson KA; Gu T; Hu J; Fowler C; Zhang H
    Opt Express; 2020 Oct; 28(21):31932-31942. PubMed ID: 33115157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metasurface-Integrated Photonic Platform for Versatile Free-Space Beam Projection with Polarization Control.
    Yulaev A; Zhu W; Zhang C; Westly DA; Lezec HJ; Agrawal A; Aksyuk V
    ACS Photonics; 2019; 6(11):. PubMed ID: 33033741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network.
    Chen Y; Zhu J; Xie Y; Feng N; Liu QH
    Nanoscale; 2019 May; 11(19):9749-9755. PubMed ID: 31066432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.