These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33199775)
21. Stromal bed thickness measurement during laser in situ keratomileusis using intraoperative optical coherence tomography. Ye C; Yu M; Jhanji V Cornea; 2015 Apr; 34(4):387-91. PubMed ID: 25651495 [TBL] [Abstract][Full Text] [Related]
22. Semiautomated SD-OCT Measurements of Corneal Sublayer Thickness in Normal and Post-SMILE Eyes. Luft N; Ring MH; Dirisamer M; Mursch-Edlmayr AS; Pretzl J; Bolz M; Priglinger SG Cornea; 2016 Jul; 35(7):972-9. PubMed ID: 27027916 [TBL] [Abstract][Full Text] [Related]
23. Comparison of ultrasonic pachymetry and Fourier-domain optical coherence tomography for measurement of corneal thickness in dogs with and without corneal disease. Hoehn AL; Thomasy SM; Kass PH; Horikawa T; Samuel M; Shull OR; Stewart KA; Murphy CJ Vet J; 2018 Dec; 242():59-66. PubMed ID: 30503546 [TBL] [Abstract][Full Text] [Related]
24. Comparison of Central Corneal Thickness Measured by Standard Ultrasound Pachymetry, Corneal Topography, Tono-Pachymetry and Anterior Segment Optical Coherence Tomography. González-Pérez J; Queiruga Piñeiro J; Sánchez García Á; González Méijome JM Curr Eye Res; 2018 Jul; 43(7):866-872. PubMed ID: 29634372 [TBL] [Abstract][Full Text] [Related]
27. Measurements of Corneal Thickness in Eyes with Pseudoexfoliation Syndrome: Comparative Study of Different Image Processing Protocols. Krysik K; Dobrowolski D; Polanowska K; Lyssek-Boron A; Wylegala EA J Healthc Eng; 2017; 2017():4315238. PubMed ID: 29081937 [TBL] [Abstract][Full Text] [Related]
28. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry. Strom AR; Cortés DE; Rasmussen CA; Thomasy SM; McIntyre K; Lee SF; Kass PH; Mannis MJ; Murphy CJ Vet Ophthalmol; 2016 Jan; 19(1):50-6. PubMed ID: 25676065 [TBL] [Abstract][Full Text] [Related]
29. Topography and pachymetry maps for mouse corneas using optical coherence tomography. Liu AS; Brown DM; Conn RE; McNabb RP; Pardue MT; Kuo AN Exp Eye Res; 2020 Jan; 190():107868. PubMed ID: 31704241 [TBL] [Abstract][Full Text] [Related]
30. Postoperative Corneal Epithelial Remodeling After Intracorneal Ring Segment Procedures for Keratoconus: An Optical Coherence Tomography Study. David C; Reinstein DZ; Archer TJ; Kallel S; Vida RS; Goemaere I; Cuyaubère R; Borderie M; Laroche L; Borderie V; Bouheraoua N J Refract Surg; 2021 Jun; 37(6):404-413. PubMed ID: 34170769 [TBL] [Abstract][Full Text] [Related]
32. Central Corneal Thickness Reproducibility among Ten Different Instruments. Pierro L; Iuliano L; Gagliardi M; Ambrosi A; Rama P; Bandello F Optom Vis Sci; 2016 Nov; 93(11):1371-1379. PubMed ID: 27571223 [TBL] [Abstract][Full Text] [Related]
33. Mapping of Corneal Layer Thicknesses With Polarization-Sensitive Optical Coherence Tomography Using a Conical Scan Pattern. Beer F; Wartak A; Pircher N; Holzer S; Lammer J; Schmidinger G; Baumann B; Pircher M; Hitzenberger CK Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5579-5588. PubMed ID: 30481276 [TBL] [Abstract][Full Text] [Related]
34. Normal corneal thickness measurements in pigmented rabbits using spectral-domain anterior segment optical coherence tomography. Wang X; Wu Q Vet Ophthalmol; 2013 Mar; 16(2):130-4. PubMed ID: 22672083 [TBL] [Abstract][Full Text] [Related]
35. Reliability of manual measurements of corneal thickness obtained from healthy canine eyes using spectral-domain optical coherence tomography (SD-OCT). Alario AF; Pirie CG Can J Vet Res; 2014 Jul; 78(3):221-5. PubMed ID: 24982554 [TBL] [Abstract][Full Text] [Related]
36. Central Corneal Thickness After Cross-linking Using High-Definition Optical Coherence Tomography, Ultrasound, and Dual Scheimpflug Tomography: A Comparative Study Over One Year. Antonios R; Fattah MA; Maalouf F; Abiad B; Awwad ST Am J Ophthalmol; 2016 Jul; 167():38-47. PubMed ID: 27084001 [TBL] [Abstract][Full Text] [Related]
37. Noncontact optical coherence tomography for measurement of corneal flap and residual stromal bed thickness after laser in situ keratomileusis. Thompson RW; Choi DM; Price MO; Potrezbowski L; Price FW J Refract Surg; 2003; 19(5):507-15. PubMed ID: 14518739 [TBL] [Abstract][Full Text] [Related]
38. Noninvasive Assessment of Corneal Crosslinking With Phase-Decorrelation Optical Coherence Tomography. Blackburn BJ; Gu S; Ford MR; de Stefano V; Jenkins MW; Dupps WJ; Rollins AM Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):41-51. PubMed ID: 30601930 [TBL] [Abstract][Full Text] [Related]
39. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera. Gonul S; Koktekir BE; Bakbak B; Gedik S Arq Bras Oftalmol; 2014; 77(6):345-50. PubMed ID: 25627178 [TBL] [Abstract][Full Text] [Related]
40. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement. Kim JH; Lee D; Rhee KI J Cataract Refract Surg; 2008 Jan; 34(1):132-6. PubMed ID: 18165093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]