BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 33199860)

  • 41. From engineered heart tissue to cardiac organoid.
    Cho J; Lee H; Rah W; Chang HJ; Yoon YS
    Theranostics; 2022; 12(6):2758-2772. PubMed ID: 35401829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nephron organoids derived from human pluripotent stem cells model kidney development and injury.
    Morizane R; Lam AQ; Freedman BS; Kishi S; Valerius MT; Bonventre JV
    Nat Biotechnol; 2015 Nov; 33(11):1193-200. PubMed ID: 26458176
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells.
    Fligor CM; Langer KB; Sridhar A; Ren Y; Shields PK; Edler MC; Ohlemacher SK; Sluch VM; Zack DJ; Zhang C; Suter DM; Meyer JS
    Sci Rep; 2018 Sep; 8(1):14520. PubMed ID: 30266927
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells.
    Garreta E; Prado P; Tarantino C; Oria R; Fanlo L; Martí E; Zalvidea D; Trepat X; Roca-Cusachs P; Gavaldà-Navarro A; Cozzuto L; Campistol JM; Izpisúa Belmonte JC; Hurtado Del Pozo C; Montserrat N
    Nat Mater; 2019 Apr; 18(4):397-405. PubMed ID: 30778227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro.
    Ding B; Sun G; Liu S; Peng E; Wan M; Chen L; Jackson J; Atala A
    Cell Transplant; 2020; 29():963689719897066. PubMed ID: 32166969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update.
    Azar J; Bahmad HF; Daher D; Moubarak MM; Hadadeh O; Monzer A; Al Bitar S; Jamal M; Al-Sayegh M; Abou-Kheir W
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The development of anatomy: from macroscopic body dissections to stem cell-derived organoids.
    Brand-Saberi B; Zaehres H
    Histochem Cell Biol; 2016 Dec; 146(6):647-650. PubMed ID: 27695942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stem cell-derived organoids and their application for medical research and patient treatment.
    Bartfeld S; Clevers H
    J Mol Med (Berl); 2017 Jul; 95(7):729-738. PubMed ID: 28391362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organoid technologies meet genome engineering.
    Nie J; Hashino E
    EMBO Rep; 2017 Mar; 18(3):367-376. PubMed ID: 28202491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organoids: Modeling Development and the Stem Cell Niche in a Dish.
    Kretzschmar K; Clevers H
    Dev Cell; 2016 Sep; 38(6):590-600. PubMed ID: 27676432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kidney organoids in translational medicine: Disease modeling and regenerative medicine.
    Miyoshi T; Hiratsuka K; Saiz EG; Morizane R
    Dev Dyn; 2020 Jan; 249(1):34-45. PubMed ID: 30843293
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro.
    Rahmani S; Breyner NM; Su HM; Verdu EF; Didar TF
    Biomaterials; 2019 Feb; 194():195-214. PubMed ID: 30612006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Derivation of Epithelial-Only Airway Organoids from Human Pluripotent Stem Cells.
    McCauley KB; Hawkins F; Kotton DN
    Curr Protoc Stem Cell Biol; 2018 May; 45(1):e51. PubMed ID: 30040246
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biologically inspired approaches to enhance human organoid complexity.
    Holloway EM; Capeling MM; Spence JR
    Development; 2019 Apr; 146(8):. PubMed ID: 30992275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regeneration of complex oral organs using 3D cell organization technology.
    Oshima M; Ogawa M; Tsuji T
    Curr Opin Cell Biol; 2017 Dec; 49():84-90. PubMed ID: 29289879
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids.
    Chang M; Bogacheva MS; Lou YR
    Front Cell Dev Biol; 2021; 9():748576. PubMed ID: 34660606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. hPSC-derived organoids: models of human development and disease.
    Frum T; Spence JR
    J Mol Med (Berl); 2021 Apr; 99(4):463-473. PubMed ID: 32857169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of kidney tubular organoids from human pluripotent stem cells.
    Yamaguchi S; Morizane R; Homma K; Monkawa T; Suzuki S; Fujii S; Koda M; Hiratsuka K; Yamashita M; Yoshida T; Wakino S; Hayashi K; Sasaki J; Hori S; Itoh H
    Sci Rep; 2016 Dec; 6():38353. PubMed ID: 27982115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation.
    Vandana JJ; Manrique C; Lacko LA; Chen S
    Cell Stem Cell; 2023 May; 30(5):571-591. PubMed ID: 37146581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioengineering Considerations for a Nurturing Way to Enhance Scalable Expansion of Human Pluripotent Stem Cells.
    Kim MH; Kino-Oka M
    Biotechnol J; 2020 Apr; 15(4):e1900314. PubMed ID: 31904180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.