These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33199862)
1. Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis. Ma S; Morrison R; Hobbs SJ; Soni V; Farrow-Johnson J; Frando A; Fleck N; Grundner C; Rhee KY; Rustad TR; Sherman DR Nat Microbiol; 2021 Jan; 6(1):44-50. PubMed ID: 33199862 [TBL] [Abstract][Full Text] [Related]
2. Examining the basis of isoniazid tolerance in nonreplicating Mycobacterium tuberculosis using transcriptional profiling. Tudó G; Laing K; Mitchison DA; Butcher PD; Waddell SJ Future Med Chem; 2010 Aug; 2(8):1371-83. PubMed ID: 21426023 [TBL] [Abstract][Full Text] [Related]
3. OxiR specifically responds to isoniazid and regulates isoniazid susceptibility in mycobacteria. Yang M; Zhang L; Tao HL; Sun YC; Lou ZZ; Jia WZ; Hu LH; Gao CH FEMS Microbiol Lett; 2019 May; 366(10):. PubMed ID: 31125044 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Zhu C; Liu Y; Hu L; Yang M; He ZG J Biol Chem; 2018 Oct; 293(43):16741-16750. PubMed ID: 30185616 [TBL] [Abstract][Full Text] [Related]
5. EfpA is required for regrowth of Roberts AH; Moon CW; Faulkner V; Kendall SL; Waddell SJ; Bacon J Antimicrob Agents Chemother; 2024 Aug; 68(8):e0026124. PubMed ID: 39037241 [TBL] [Abstract][Full Text] [Related]
6. Cd(II)-binding transcriptional regulator interacts with isoniazid and regulates drug susceptibility in mycobacteria. Yang M; Jia SH; Tao HL; Zhu C; Jia WZ; Hu LH; Gao CH J Biochem; 2021 Feb; 169(1):43-53. PubMed ID: 32706888 [TBL] [Abstract][Full Text] [Related]
7. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Colangeli R; Helb D; Sridharan S; Sun J; Varma-Basil M; Hazbón MH; Harbacheuski R; Megjugorac NJ; Jacobs WR; Holzenburg A; Sacchettini JC; Alland D Mol Microbiol; 2005 Mar; 55(6):1829-40. PubMed ID: 15752203 [TBL] [Abstract][Full Text] [Related]
8. Differential Isoniazid Response Pattern Between Active and Dormant Abo-Kadoum MA; Dai Y; Asaad M; Hamdi I; Xie J Microb Drug Resist; 2021 Jun; 27(6):768-775. PubMed ID: 33211637 [TBL] [Abstract][Full Text] [Related]
9. Comparing isogenic strains of Beijing genotype Mycobacterium tuberculosis after acquisition of Isoniazid resistance: A proteomics approach. Nieto R LM; Mehaffy C; Dobos KM Proteomics; 2016 May; 16(9):1376-80. PubMed ID: 26929115 [TBL] [Abstract][Full Text] [Related]
10. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Zhang Y; Dhandayuthapani S; Deretic V Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13212-6. PubMed ID: 8917570 [TBL] [Abstract][Full Text] [Related]
11. Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Rodrigues L; Machado D; Couto I; Amaral L; Viveiros M Infect Genet Evol; 2012 Jun; 12(4):695-700. PubMed ID: 21871582 [TBL] [Abstract][Full Text] [Related]
13. Contribution of dfrA and inhA mutations to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates. Ho YM; Sun YJ; Wong SY; Lee AS Antimicrob Agents Chemother; 2009 Sep; 53(9):4010-2. PubMed ID: 19581462 [TBL] [Abstract][Full Text] [Related]
14. Contribution of putative efflux pump genes to isoniazid resistance in clinical isolates of Narang A; Giri A; Gupta S; Garima K; Bose M; Varma-Basil M Int J Mycobacteriol; 2017; 6(2):177-183. PubMed ID: 28559521 [TBL] [Abstract][Full Text] [Related]
15. Downregulation of katG expression is associated with isoniazid resistance in Mycobacterium tuberculosis. Ando H; Kitao T; Miyoshi-Akiyama T; Kato S; Mori T; Kirikae T Mol Microbiol; 2011 Mar; 79(6):1615-28. PubMed ID: 21244531 [TBL] [Abstract][Full Text] [Related]
16. Dormant Mycobacterium tuberculosis converts isoniazid to the active drug in a Wayne's model of dormancy. Raghunandanan S; Jose L; Kumar RA J Antibiot (Tokyo); 2018 Nov; 71(11):939-949. PubMed ID: 30185901 [TBL] [Abstract][Full Text] [Related]
17. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Unissa AN; Subbian S; Hanna LE; Selvakumar N Infect Genet Evol; 2016 Nov; 45():474-492. PubMed ID: 27612406 [TBL] [Abstract][Full Text] [Related]
18. Validation of Novel Mycobacterium tuberculosis Isoniazid Resistance Mutations Not Detectable by Common Molecular Tests. Kandler JL; Mercante AD; Dalton TL; Ezewudo MN; Cowan LS; Burns SP; Metchock B; ; Cegielski P; Posey JE Antimicrob Agents Chemother; 2018 Oct; 62(10):. PubMed ID: 30082293 [TBL] [Abstract][Full Text] [Related]
19. Impact of isoniazid resistance on virulence of global and south Indian clinical isolates of Mycobacterium tuberculosis. Ameeruddin NU; Luke Elizabeth H Tuberculosis (Edinb); 2014 Dec; 94(6):557-63. PubMed ID: 25270728 [TBL] [Abstract][Full Text] [Related]
20. Analysis of interactions of clinical mutants of catalase-peroxidase (KatG) responsible for isoniazid resistance in Mycobacterium tuberculosis with derivatives of isoniazid. Unissa AN; Doss C GP; Kumar T; Swathi S; Lakshmi AR; Hanna LE J Glob Antimicrob Resist; 2017 Dec; 11():57-67. PubMed ID: 28743650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]