These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33199893)

  • 1. Structural insights into the photoactivation of Arabidopsis CRY2.
    Ma L; Guan Z; Wang Q; Yan X; Wang J; Wang Z; Cao J; Zhang D; Gong X; Yin P
    Nat Plants; 2020 Dec; 6(12):1432-1438. PubMed ID: 33199893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivation and inactivation of Arabidopsis cryptochrome 2.
    Wang Q; Zuo Z; Wang X; Gu L; Yoshizumi T; Yang Z; Yang L; Liu Q; Liu W; Han YJ; Kim JI; Liu B; Wohlschlegel JA; Matsui M; Oka Y; Lin C
    Science; 2016 Oct; 354(6310):343-347. PubMed ID: 27846570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oligomeric structures of plant cryptochromes.
    Shao K; Zhang X; Li X; Hao Y; Huang X; Ma M; Zhang M; Yu F; Liu H; Zhang P
    Nat Struct Mol Biol; 2020 May; 27(5):480-488. PubMed ID: 32398825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2.
    Ma L; Wang X; Guan Z; Wang L; Wang Y; Zheng L; Gong Z; Shen C; Wang J; Zhang D; Liu Z; Yin P
    Nat Struct Mol Biol; 2020 May; 27(5):472-479. PubMed ID: 32398826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dual-action mechanism of Arabidopsis cryptochromes.
    Qu GP; Jiang B; Lin C
    J Integr Plant Biol; 2024 May; 66(5):883-896. PubMed ID: 37902426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
    Li X; Wang Q; Yu X; Liu H; Yang H; Zhao C; Liu X; Tan C; Klejnot J; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20844-9. PubMed ID: 22139370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Wang X; Wang Q; Han YJ; Liu Q; Gu L; Yang Z; Su J; Liu B; Zuo Z; He W; Wang J; Liu B; Matsui M; Kim JI; Oka Y; Lin C
    Plant J; 2017 Nov; 92(3):426-436. PubMed ID: 28833729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP; Spiltoir JI; Höglund C; Polstein LR; Heine-Koskinen S; Gersbach CA; Rossi J; Tucker CL
    Nucleic Acids Res; 2017 Nov; 45(20):e167. PubMed ID: 28431041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.
    Park H; Kim NY; Lee S; Kim N; Kim J; Heo WD
    Nat Commun; 2017 Jun; 8(1):30. PubMed ID: 28646204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling.
    Tan ST; Dai C; Liu HT; Xue HW
    Plant Cell; 2013 Jul; 25(7):2618-32. PubMed ID: 23897926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding CRY2 interactions for optical control of intracellular signaling.
    Duan L; Hope J; Ong Q; Lou HY; Kim N; McCarthy C; Acero V; Lin MZ; Cui B
    Nat Commun; 2017 Sep; 8(1):547. PubMed ID: 28916751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
    Liu H; Yu X; Li K; Klejnot J; Yang H; Lisiero D; Lin C
    Science; 2008 Dec; 322(5907):1535-9. PubMed ID: 18988809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.
    Shalitin D; Yang H; Mockler TC; Maymon M; Guo H; Whitelam GC; Lin C
    Nature; 2002 Jun; 417(6890):763-7. PubMed ID: 12066190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Gu NN; Zhang YC; Yang HQ
    Mol Plant; 2012 Jan; 5(1):85-97. PubMed ID: 21765176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.
    Taslimi A; Zoltowski B; Miranda JG; Pathak GP; Hughes RM; Tucker CL
    Nat Chem Biol; 2016 Jun; 12(6):425-30. PubMed ID: 27065233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2.
    Zuo ZC; Meng YY; Yu XH; Zhang ZL; Feng DS; Sun SF; Liu B; Lin CT
    Mol Plant; 2012 May; 5(3):726-33. PubMed ID: 22311776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
    Holtkotte X; Ponnu J; Ahmad M; Hoecker U
    PLoS Genet; 2017 Oct; 13(10):e1007044. PubMed ID: 28991901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus.
    Yu X; Klejnot J; Zhao X; Shalitin D; Maymon M; Yang H; Lee J; Liu X; Lopez J; Lin C
    Plant Cell; 2007 Oct; 19(10):3146-56. PubMed ID: 17965271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis.
    Liu Y; Li X; Li K; Liu H; Lin C
    PLoS Genet; 2013; 9(10):e1003861. PubMed ID: 24130508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.
    Che DL; Duan L; Zhang K; Cui B
    ACS Synth Biol; 2015 Oct; 4(10):1124-35. PubMed ID: 25985220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.