These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 33200409)
1. Studying endothelial cell shedding and orientation using adaptive perfusion-culture in a microfluidic vascular chip. Zhang X; Wang Z; Zhang YS; Yan S; Hou C; Gong Y; Qiu J; Chen M; Li Q Biotechnol Bioeng; 2021 Feb; 118(2):963-978. PubMed ID: 33200409 [TBL] [Abstract][Full Text] [Related]
2. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Raasch M; Rennert K; Jahn T; Peters S; Henkel T; Huber O; Schulz I; Becker H; Lorkowski S; Funke H; Mosig A Biofabrication; 2015 Mar; 7(1):015013. PubMed ID: 25727374 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614 [TBL] [Abstract][Full Text] [Related]
4. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size. Mathews A; Colombus S; Krishnan VK; Krishnan LK J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434 [TBL] [Abstract][Full Text] [Related]
5. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728 [TBL] [Abstract][Full Text] [Related]
6. Endothelial Cell Culture Under Perfusion On A Polyester-Toner Microfluidic Device. Urbaczek AC; Leão PAGC; Souza FZR; Afonso A; Vieira Alberice J; Cappelini LTD; Carlos IZ; Carrilho E Sci Rep; 2017 Sep; 7(1):10466. PubMed ID: 28874818 [TBL] [Abstract][Full Text] [Related]
7. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Zhou F; Jia X; Yang Y; Yang Q; Gao C; Hu S; Zhao Y; Fan Y; Yuan X Acta Biomater; 2016 Oct; 43():303-313. PubMed ID: 27477849 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system. Ohtani-Kaneko R; Sato K; Tsutiya A; Nakagawa Y; Hashizume K; Tazawa H Biomed Microdevices; 2017 Oct; 19(4):91. PubMed ID: 28994005 [TBL] [Abstract][Full Text] [Related]
9. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications. Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526 [TBL] [Abstract][Full Text] [Related]
10. Study on the hemodynamic effects of different pulsatile working modes of a rotary blood pump using a microfluidic platform that realizes Liang L; Wang X; Chen D; Sethu P; Giridharan GA; Wang Y; Wang Y; Qin KR Lab Chip; 2024 Apr; 24(9):2428-2439. PubMed ID: 38625094 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348 [TBL] [Abstract][Full Text] [Related]
12. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801 [TBL] [Abstract][Full Text] [Related]
13. Barrier-free, open-top microfluidic chip for generating two distinct, interconnected 3D microvascular networks. Yrjänäinen A; Mesiä E; Lampela E; Kreutzer J; Vihinen J; Tornberg K; Vuorenpää H; Miettinen S; Kallio P; Mäki AJ Sci Rep; 2024 Oct; 14(1):22916. PubMed ID: 39358415 [TBL] [Abstract][Full Text] [Related]
14. Temperature-responsive hydrogel-grafted vessel-on-a-chip: Exploring cold-induced endothelial injury. Shen C; Li J; She W; Liu A; Meng Q Biotechnol Bioeng; 2024 Oct; 121(10):3239-3251. PubMed ID: 38946677 [TBL] [Abstract][Full Text] [Related]
15. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256 [TBL] [Abstract][Full Text] [Related]
16. A new method for the preparation of three-layer vascular stents: a preliminary study on the preparation of biomimetic three-layer vascular stents using a three-stage electrospun membrane. Chen X; Chen D; Ai X; Hu R; Zhang H Biomed Mater; 2020 Jul; 15(5):055010. PubMed ID: 32392542 [TBL] [Abstract][Full Text] [Related]
17. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828 [TBL] [Abstract][Full Text] [Related]
18. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478 [TBL] [Abstract][Full Text] [Related]
19. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Du F; Wang H; Zhao W; Li D; Kong D; Yang J; Zhang Y Biomaterials; 2012 Jan; 33(3):762-70. PubMed ID: 22056285 [TBL] [Abstract][Full Text] [Related]