These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33200409)

  • 41. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor.
    Smith RJ; Koobatian MT; Shahini A; Swartz DD; Andreadis ST
    Biomaterials; 2015 May; 51():303-312. PubMed ID: 25771020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchically designed electrospun tubular scaffolds for cardiovascular applications.
    Shalumon KT; Sreerekha PR; Sathish D; Tamura H; Nair SV; Chennazhi KP; Jayakumar R
    J Biomed Nanotechnol; 2011 Oct; 7(5):609-20. PubMed ID: 22195478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of engineered tubular tissue for small blood vessels via three-dimensional cellular assembly and organization ex vivo.
    Masuda T; Ukiki M; Yamagishi Y; Matsusaki M; Akashi M; Yokoyama U; Arai F
    J Biotechnol; 2018 Jun; 276-277():46-53. PubMed ID: 29689281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reconstructing the Human Renal Vascular-Tubular Unit In Vitro.
    Rayner SG; Phong KT; Xue J; Lih D; Shankland SJ; Kelly EJ; Himmelfarb J; Zheng Y
    Adv Healthc Mater; 2018 Dec; 7(23):e1801120. PubMed ID: 30379416
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pumpless microfluidic devices for generating healthy and diseased endothelia.
    Yang Y; Fathi P; Holland G; Pan D; Wang NS; Esch MB
    Lab Chip; 2019 Sep; 19(19):3212-3219. PubMed ID: 31455960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip.
    Li X; Mearns SM; Martins-Green M; Liu Y
    J Vis Exp; 2013 Oct; (80):e50771. PubMed ID: 24193102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses.
    Zheng C; Zhang X; Li C; Pang Y; Huang Y
    Anal Chem; 2017 Mar; 89(6):3710-3715. PubMed ID: 28225604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A microfluidic design to provide a stable and uniform in vitro microenvironment for cell culture inspired by the redundancy characteristic of leaf areoles.
    Li J; Wei J; Liu Y; Liu B; Liu T; Jiang Y; Ding L; Liu C
    Lab Chip; 2017 Nov; 17(22):3921-3933. PubMed ID: 29063079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human brain microvascular endothelial cells resist elongation due to shear stress.
    Reinitz A; DeStefano J; Ye M; Wong AD; Searson PC
    Microvasc Res; 2015 May; 99():8-18. PubMed ID: 25725258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow.
    Whited BM; Rylander MN
    Biotechnol Bioeng; 2014 Jan; 111(1):184-95. PubMed ID: 23842728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tissue Engineered Small Vessel Conduits - The Anti-Thrombotic Effect of Re-Endothelialization of Decellularized Baboon Arteries: A Preliminary Experimental Study.
    Meiring M; Khemisi M; Laker L; Dohmen PM; Smit FE
    Med Sci Monit Basic Res; 2017 Oct; 23():344-351. PubMed ID: 29081492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acute hyperglycemia exacerbates trauma-induced endothelial and glycocalyx injury: An in vitro model.
    Diebel LN; Diebel ME; Martin JV; Liberati DM
    J Trauma Acute Care Surg; 2018 Nov; 85(5):960-967. PubMed ID: 29851906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells.
    Scarritt ME; Pashos NC; Motherwell JM; Eagle ZR; Burkett BJ; Gregory AN; Mostany R; Weiss DJ; Alvarez DF; Bunnell BA
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e786-e806. PubMed ID: 27943597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.
    Li L; Lv X; Ostrovidov S; Shi X; Zhang N; Liu J
    Mol Pharm; 2014 Jul; 11(7):2009-15. PubMed ID: 24673554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip.
    Jeong S; Seo JH; Garud KS; Park SW; Lee MY
    Biosens Bioelectron; 2021 Jul; 183():113197. PubMed ID: 33819903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.