These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33200482)

  • 1. Green Fabrication of Highly Conductive Paper Electrodes via Interface Engineering with Aminocellulose.
    Yang Y; Huang Q; Ge W; Ren J; Heinze T; Wang X
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000499. PubMed ID: 33200482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles.
    Yang Y; Huang Q; Payne GF; Sun R; Wang X
    Nanoscale; 2019 Jan; 11(2):725-732. PubMed ID: 30565620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device.
    Liu X; Xiao W; Tao T; Yang J; Li H; Chen Q; Huang L; Ni Y; Chen L; Ouyang X; Zhu X; Li J
    Carbohydr Polym; 2021 May; 260():117820. PubMed ID: 33712163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-conductivity, stable Ag/cellulose paper prepared via in situ reduction of fractal-structured silver particles.
    Zhang S; Hua C; He B; Chang P; Du M; Liu Y
    Carbohydr Polym; 2021 Jun; 262():117923. PubMed ID: 33838802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Nature-Inspired, Flexible Substrate Strategy for Future Wearable Electronics.
    Zhu C; Chalmers E; Chen L; Wang Y; Xu BB; Li Y; Liu X
    Small; 2019 Aug; 15(35):e1902440. PubMed ID: 31215162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous and air-compatible fabrication of high-performance conductive textiles.
    Wang X; Yan C; Hu H; Zhou X; Guo R; Liu X; Xie Z; Huang Z; Zheng Z
    Chem Asian J; 2014 Aug; 9(8):2170-7. PubMed ID: 24867263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible electronic skin with nanostructured interfaces via flipping over electroless deposited metal electrodes.
    Shi Z; Wu X; Zhang H; Chai H; Li CM; Lu Z; Yu L
    J Colloid Interface Sci; 2019 Jan; 534():618-624. PubMed ID: 30265989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of conductive cellulose fabrics with durable antibacterial properties and their application in wearable electrodes.
    Wang L; He D; Qian L; He B; Li J
    Int J Biol Macromol; 2021 Jul; 183():651-659. PubMed ID: 33957200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes.
    Li Y; Wang Q; Wang Y; Bai M; Shao J; Ji H; Feng H; Zhang J; Ma X; Zhao W
    Dalton Trans; 2019 Jun; 48(22):7659-7665. PubMed ID: 31049511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aligned wave-like elastomer fibers with robust conductive layers
    Li Y; Chen Y; Yang Y; Gu JD; Ke K; Yin B; Yang MB
    J Mater Chem B; 2021 Nov; 9(42):8801-8808. PubMed ID: 34633022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Transparent, Flexible and Conductive CNF/AgNW Paper for Paper Electronics.
    Li R; Zhang K; Chen G
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air.
    Sakurai S; Akiyama Y; Kawasaki H
    R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles.
    Guo R; Li H; Wang H; Zhao X; Yu H; Ye Q
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56597-56606. PubMed ID: 34784187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics.
    Yu H; Fang D; Dirican M; Wang R; Tian Y; Chen L; Liu H; Wang J; Tang F; Asiri AM; Zhang X; Tao J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20281-20290. PubMed ID: 31083900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics.
    Kim D; Ko Y; Kwon G; Kim UJ; You J
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38517-38525. PubMed ID: 30360060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable Transparent Substrate Based on Edible Starch-Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics.
    Miao J; Liu H; Li Y; Zhang X
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23037-23047. PubMed ID: 29905073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor phase polymerization for electronically conductive nanopaper based on bacterial cellulose/poly(3,4-ethylenedioxythiophene).
    Kwon G; Kim SH; Kim D; Lee K; Jeon Y; Park CS; You J
    Carbohydr Polym; 2021 Apr; 257():117658. PubMed ID: 33541667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Interface Molecular Engineering for E-Textiles.
    Zhu C; Li Y; Liu X
    Polymers (Basel); 2018 May; 10(6):. PubMed ID: 30966608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics.
    Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.