These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33200562)
1. Effect of Strain Rates on Failure of Mechanical Properties of Lumbar Intervertebral Disc Under Flexion. Li K; Zhang SJ; Du CF; Zhao JZ; Liu Q; Zhang CQ; Sun YF Orthop Surg; 2020 Dec; 12(6):1980-1989. PubMed ID: 33200562 [TBL] [Abstract][Full Text] [Related]
2. Failure mechanical properties of lumbar intervertebral disc under high loading rate. Liu Q; Liang XF; Wang AG; Liu Y; Jia TJ; Li K; Zhang CQ J Orthop Surg Res; 2024 Jan; 19(1):15. PubMed ID: 38167031 [TBL] [Abstract][Full Text] [Related]
3. Strain rate-dependent failure mechanics of the intervertebral disc under tension/compression and constitutive analysis. Liu Q; Zhang HL; Zhang YL; Wang S; Feng XQ; Li K; Zhang CQ Med Eng Phys; 2024 May; 127():104158. PubMed ID: 38692761 [TBL] [Abstract][Full Text] [Related]
4. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction. Zhang CQ; Zhang T; Gao L; Du CF; Liu Q; Liu HY; Wang X Orthop Surg; 2019 Oct; 11(5):895-902. PubMed ID: 31663289 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical and morphologic evaluation of a three-dimensional fabric sheep artificial intervertebral disc: in vitro and in vivo analysis. Kadoya K; Kotani Y; Abumi K; Takada T; Shimamoto N; Shikinami Y; Kadosawa T; Kaneda K Spine (Phila Pa 1976); 2001 Jul; 26(14):1562-9. PubMed ID: 11462087 [TBL] [Abstract][Full Text] [Related]
6. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression]. Zhu S; Yang X; Luan Y; Liu Q; Zhang C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259 [TBL] [Abstract][Full Text] [Related]
7. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
8. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Johannessen W; Vresilovic EJ; Wright AC; Elliott DM Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723 [TBL] [Abstract][Full Text] [Related]
9. Influence of Complex Loading Conditions on Intervertebral Disc Failure. Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053 [TBL] [Abstract][Full Text] [Related]
10. Creep experimental study on the lumbar intervertebral disk under vibration compression load. Yang X; Cheng X; Luan Y; Liu Q; Zhang C Proc Inst Mech Eng H; 2019 Aug; 233(8):858-867. PubMed ID: 31203788 [TBL] [Abstract][Full Text] [Related]
11. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Araújo ÂR; Peixinho N; Pinho AC; Claro JC Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017 [TBL] [Abstract][Full Text] [Related]
12. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692 [TBL] [Abstract][Full Text] [Related]
13. Mechanical yield of the lumbar annulus: a possible contributor to instability: Laboratory investigation. Stemper BD; Baisden JL; Yoganandan N; Shender BS; Maiman DJ J Neurosurg Spine; 2014 Oct; 21(4):608-13. PubMed ID: 25084030 [TBL] [Abstract][Full Text] [Related]
14. How Osmoviscoelastic Coupling Affects Recovery of Cyclically Compressed Intervertebral Disc. Feki F; Taktak R; Kandil K; Derrouiche A; Moulart M; Haddar N; Zaïri F; Zaïri F Spine (Phila Pa 1976); 2020 Nov; 45(21):E1376-E1385. PubMed ID: 33031252 [TBL] [Abstract][Full Text] [Related]
15. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. Lu YM; Hutton WC; Gharpuray VM J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680 [TBL] [Abstract][Full Text] [Related]
16. The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs. Maria Luisa R; Luca C J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601688 [TBL] [Abstract][Full Text] [Related]
17. The effect of failure mechanics on the fatigue responses of lumbar intervertebral disc. Liu Q; Zhang Q; Zhang CQ; Wang AG; Xu ZC; Song SX; Jia TJ; Li K J Biomech; 2024 Nov; 176():112363. PubMed ID: 39413450 [TBL] [Abstract][Full Text] [Related]
18. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in analytical modeling of lumbar disc degeneration. Natarajan RN; Williams JR; Andersson GB Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922 [TBL] [Abstract][Full Text] [Related]
20. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Kemper AR; McNally C; Duma SM Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]