These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33200562)

  • 21. Internal intervertebral disc mechanics as revealed by stress profilometry.
    McNally DS; Adams MA
    Spine (Phila Pa 1976); 1992 Jan; 17(1):66-73. PubMed ID: 1536017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tensile properties of nondegenerate human lumbar anulus fibrosus.
    Ebara S; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M
    Spine (Phila Pa 1976); 1996 Feb; 21(4):452-61. PubMed ID: 8658249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overloading effect on the osmo-viscoelastic and recovery behavior of the intervertebral disc.
    Feki F; Taktak R; Haddar N; Moulart M; Zaïri F; Zaïri F
    Proc Inst Mech Eng H; 2024 Apr; 238(4):430-437. PubMed ID: 38480472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Spiral Nucleus Implant Parameters on the Compressive Biomechanics of Lumbar Intervertebral Disc.
    Du CF; Liu CJ; Huang YP; Wang X
    World Neurosurg; 2020 Feb; 134():e878-e884. PubMed ID: 31733385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs.
    Showalter BL; Malhotra NR; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2633-40. PubMed ID: 24957922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of a New Annular Incision on Biomechanical Properties of the Intervertebral Disc.
    Fu LJ; Chen CS; Xie YZ; Yang JW; Sun XJ; Zhang P
    Orthop Surg; 2016 Feb; 8(1):68-74. PubMed ID: 27028383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How pre-strain affects the chemo-torsional response of the intervertebral disc.
    Derrouiche A; Feki F; Zaïri F; Taktak R; Moulart M; Qu Z; Ismail J; Charfi S; Haddar N; Zaïri F
    Clin Biomech (Bristol); 2020 Jun; 76():105020. PubMed ID: 32416404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony features: An in vitro full-field analysis.
    Palanca M; Ruspi ML; Cristofolini L; Liebsch C; Villa T; Brayda-Bruno M; Galbusera F; Wilke HJ; La Barbera L
    PLoS One; 2020; 15(1):e0227210. PubMed ID: 31935225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Material properties of bovine intervertebral discs across strain rates.
    Newell N; Grigoriadis G; Christou A; Carpanen D; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():824-830. PubMed ID: 27810728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peak stresses observed in the posterior lateral anulus.
    Edwards WT; Ordway NR; Zheng Y; McCullen G; Han Z; Yuan HA
    Spine (Phila Pa 1976); 2001 Aug; 26(16):1753-9. PubMed ID: 11493846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Material properties of human lumbar intervertebral discs across strain rates.
    Newell N; Carpanen D; Grigoriadis G; Little JP; Masouros SD
    Spine J; 2019 Dec; 19(12):2013-2024. PubMed ID: 31326631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2015 Jun; 40(12):891-901. PubMed ID: 25803222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical behavior of a simple model of an intervertebral disk under compressive loading.
    Spilker RL
    J Biomech; 1980; 13(10):895-901. PubMed ID: 7462264
    [No Abstract]   [Full Text] [Related]  

  • 40. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.