These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 33200564)
1. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural. Su T; Zhao D; Wang Y; Lü H; Varma RS; Len C ChemSusChem; 2021 Jan; 14(1):266-280. PubMed ID: 33200564 [TBL] [Abstract][Full Text] [Related]
2. Non-Noble Metal Catalysts for Electrooxidation of 5-Hydroxymethylfurfural. Duan Y; Lu X; Fan O; Xu H; Zhang Z; Si C; Xu T; Du H; Li X ChemSusChem; 2024 Sep; ():e202401487. PubMed ID: 39278837 [TBL] [Abstract][Full Text] [Related]
3. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494 [TBL] [Abstract][Full Text] [Related]
4. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D Front Chem; 2022; 10():853112. PubMed ID: 35372283 [TBL] [Abstract][Full Text] [Related]
5. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. Pal P; Saravanamurugan S ChemSusChem; 2019 Jan; 12(1):145-163. PubMed ID: 30362263 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation. Kubota SR; Choi KS ChemSusChem; 2018 Jul; 11(13):2138-2145. PubMed ID: 29905406 [TBL] [Abstract][Full Text] [Related]
8. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst. Wang KF; Liu CL; Sui KY; Guo C; Liu CZ Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175 [TBL] [Abstract][Full Text] [Related]
10. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O Xu S; Zhou P; Zhang Z; Yang C; Zhang B; Deng K; Bottle S; Zhu H J Am Chem Soc; 2017 Oct; 139(41):14775-14782. PubMed ID: 28956917 [TBL] [Abstract][Full Text] [Related]
11. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural. Xu H; Li X; Hu W; Yu Z; Zhou H; Zhu Y; Lu L; Si C ChemSusChem; 2022 Jul; 15(13):e202200352. PubMed ID: 35575041 [TBL] [Abstract][Full Text] [Related]
12. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid. Yi G; Teong SP; Li X; Zhang Y ChemSusChem; 2014 Aug; 7(8):2131-5. PubMed ID: 24889713 [TBL] [Abstract][Full Text] [Related]
13. Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. Chen R; Xin J; Yan D; Dong H; Lu X; Zhang S ChemSusChem; 2019 Jun; 12(12):2715-2724. PubMed ID: 30908861 [TBL] [Abstract][Full Text] [Related]
14. Ultra-Dense Supported Ruthenium Oxide Clusters via Directed Ion Exchange for Efficient Valorization of 5-Hydroxymethylfurfural. Lei C; Chen Z; Jiang T; Wang S; Du W; Cha S; Hao Y; Wang R; Cao X; Gong M Angew Chem Int Ed Engl; 2024 May; 63(21):e202319642. PubMed ID: 38554014 [TBL] [Abstract][Full Text] [Related]
15. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. Guo M; Lu X; Xiong J; Zhang R; Li X; Qiao Y; Ji N; Yu Z ChemSusChem; 2022 Sep; 15(17):e202201074. PubMed ID: 35790081 [TBL] [Abstract][Full Text] [Related]
16. Recent Progress in Metal-Catalyzed Selective Oxidation of 5-Hydroxymethylfurfural into Furan-Based Value-Added Chemicals. Zhang S; Chen Z; Gu JF; Sang W; Jiang M; Li S; Wang P; Kou Z; Chen C Chem Rec; 2023 May; 23(5):e202300019. PubMed ID: 37017486 [TBL] [Abstract][Full Text] [Related]
17. Oxygen Vacancy-Induced Metal-Support Interactions in AuPd/ZrO Chen Y; Sun L; Li Y; Cao Y; Guan W; Pan J; Zhang Z; Zhang Y Inorg Chem; 2023 Sep; 62(37):15277-15292. PubMed ID: 37656824 [TBL] [Abstract][Full Text] [Related]
18. MOF Material-Derived Bimetallic Sulfide Co Guo C; Huo Y; Zhang Q; Wan K; Yang G; Liu Z; Peng F Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630905 [TBL] [Abstract][Full Text] [Related]
19. A Novel 2,5-Furandicarboxylic Acid Biosynthesis Route from Biomass-Derived 5-Hydroxymethylfurfural Based on the Consecutive Enzyme Reactions. Wu S; Liu Q; Tan H; Zhang F; Yin H Appl Biochem Biotechnol; 2020 Aug; 191(4):1470-1482. PubMed ID: 32125648 [TBL] [Abstract][Full Text] [Related]
20. Production of 2,5-furandicarboxylic acid Wadaugsorn K; Lin KY; Kaewchada A; Jaree A RSC Adv; 2022 Jun; 12(28):18084-18092. PubMed ID: 35800325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]