These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
536 related articles for article (PubMed ID: 33200584)
41. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
42. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Das S; Jegadeesan JT; Basu B Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816 [TBL] [Abstract][Full Text] [Related]
43. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
44. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
45. 3D Contour Printing of Anatomically Mimetic Cartilage Grafts with Microfiber-Reinforced Double-Network Bioink. Wang M; Zhao J; Luo Y; Liang Q; Liu Y; Zhong G; Yu Y; Chen F Macromol Biosci; 2022 Sep; 22(9):e2200179. PubMed ID: 35797513 [TBL] [Abstract][Full Text] [Related]
47. 3D Bioprinting-Based Dopamine-Coupled Flexible Material for Nasal Cartilage Repair. Jia W; Liu Z; Ma Z; Hou P; Cao Y; Shen Z; Li M; Zhang H; Guo X; Sang S Aesthetic Plast Surg; 2024 Aug; 48(15):2951-2964. PubMed ID: 38528127 [TBL] [Abstract][Full Text] [Related]
48. Nanoparticle-Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs. Tao J; Zhu S; Zhou N; Wang Y; Wan H; Zhang L; Tang Y; Pan Y; Yang Y; Zhang J; Liu R Adv Healthc Mater; 2022 Jun; 11(12):e2102810. PubMed ID: 35194975 [TBL] [Abstract][Full Text] [Related]
49. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
50. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564 [TBL] [Abstract][Full Text] [Related]
52. Hydrogel-based reinforcement of 3D bioprinted constructs. Melchels FPW; Blokzijl MM; Levato R; Peiffer QC; de Ruijter M; Hennink WE; Vermonden T; Malda J Biofabrication; 2016 Jul; 8(3):035004. PubMed ID: 27431861 [TBL] [Abstract][Full Text] [Related]
53. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
54. Printing GelMA bioinks: a strategy for building Fu Z; Hai N; Zhong Y; Sun W Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447206 [TBL] [Abstract][Full Text] [Related]
55. A vertical additive-lathe printing system for the fabrication of tubular constructs using gelatin methacryloyl hydrogel. Fazal F; Melchels FPW; McCormack A; Silva AF; Callanan A; Koutsos V; Radacsi N J Mech Behav Biomed Mater; 2023 Mar; 139():105665. PubMed ID: 36640542 [TBL] [Abstract][Full Text] [Related]
56. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
57. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
58. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894 [TBL] [Abstract][Full Text] [Related]
59. Freeform 3D Bioprinting Involving Ink Gelation by Cascade Reaction of Oxidase and Peroxidase: A Feasibility Study Using Hyaluronic Acid-Based Ink. Sakai S; Harada R; Kotani T Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944552 [TBL] [Abstract][Full Text] [Related]
60. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]