These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33200776)
1. kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes. Cao C; Kwok D; Edie S; Li Q; Ding B; Kossinna P; Campbell S; Wu J; Greenberg M; Long Q Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33200776 [TBL] [Abstract][Full Text] [Related]
2. rvTWAS: identifying gene-trait association using sequences by utilizing transcriptome-directed feature selection. He J; Li Q; Zhang Q Genetics; 2024 Feb; 226(2):. PubMed ID: 38001381 [TBL] [Abstract][Full Text] [Related]
3. Disentangling genetic feature selection and aggregation in transcriptome-wide association studies. Cao C; Kossinna P; Kwok D; Li Q; He J; Su L; Guo X; Zhang Q; Long Q Genetics; 2022 Feb; 220(2):. PubMed ID: 34849857 [TBL] [Abstract][Full Text] [Related]
4. Power analysis of transcriptome-wide association study: Implications for practical protocol choice. Cao C; Ding B; Li Q; Kwok D; Wu J; Long Q PLoS Genet; 2021 Feb; 17(2):e1009405. PubMed ID: 33635859 [TBL] [Abstract][Full Text] [Related]
5. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
6. twas_sim, a Python-based tool for simulation and power analysis of transcriptome-wide association analysis. Wang X; Lu Z; Bhattacharya A; Pasaniuc B; Mancuso N Bioinformatics; 2023 May; 39(5):. PubMed ID: 37099718 [TBL] [Abstract][Full Text] [Related]
7. A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits. Fan R; Chiu CY; Jung J; Weeks DE; Wilson AF; Bailey-Wilson JE; Amos CI; Chen Z; Mills JL; Xiong M Genet Epidemiol; 2016 Dec; 40(8):702-721. PubMed ID: 27374056 [TBL] [Abstract][Full Text] [Related]
8. Correction to: kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes. Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36813566 [No Abstract] [Full Text] [Related]
9. Transcriptome-Wide Association Supplements Genome-Wide Association in Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639 [TBL] [Abstract][Full Text] [Related]
10. RL-SKAT: An Exact and Efficient Score Test for Heritability and Set Tests. Schweiger R; Weissbrod O; Rahmani E; Müller-Nurasyid M; Kunze S; Gieger C; Waldenberger M; Rosset S; Halperin E Genetics; 2017 Dec; 207(4):1275-1283. PubMed ID: 29025915 [TBL] [Abstract][Full Text] [Related]
11. The sequence kernel association test for multicategorical outcomes. Jiang Z; Zhang H; Ahearn TU; Garcia-Closas M; Chatterjee N; Zhu H; Zhan X; Zhao N Genet Epidemiol; 2023 Sep; 47(6):432-449. PubMed ID: 37078108 [TBL] [Abstract][Full Text] [Related]
12. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Zeng P; Dai J; Jin S; Zhou X Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361 [TBL] [Abstract][Full Text] [Related]
13. Generalized functional linear models for gene-based case-control association studies. Fan R; Wang Y; Mills JL; Carter TC; Lobach I; Wilson AF; Bailey-Wilson JE; Weeks DE; Xiong M Genet Epidemiol; 2014 Nov; 38(7):622-637. PubMed ID: 25203683 [TBL] [Abstract][Full Text] [Related]
14. Multitrait transcriptome-wide association study (TWAS) tests. Feng H; Mancuso N; Pasaniuc B; Kraft P Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479 [TBL] [Abstract][Full Text] [Related]
15. Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes. Dutta D; Scott L; Boehnke M; Lee S Genet Epidemiol; 2019 Feb; 43(1):4-23. PubMed ID: 30298564 [TBL] [Abstract][Full Text] [Related]
16. Some statistical consideration in transcriptome-wide association studies. Xue H; Pan W; Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608 [TBL] [Abstract][Full Text] [Related]
17. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies. He R; Liu M; Lin Z; Zhuang Z; Shen X; Pan W Biostatistics; 2024 Apr; 25(2):468-485. PubMed ID: 36610078 [TBL] [Abstract][Full Text] [Related]
18. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
19. Rare-variant association testing for sequencing data with the sequence kernel association test. Wu MC; Lee S; Cai T; Li Y; Boehnke M; Lin X Am J Hum Genet; 2011 Jul; 89(1):82-93. PubMed ID: 21737059 [TBL] [Abstract][Full Text] [Related]
20. On Robust Association Testing for Quantitative Traits and Rare Variants. Wei P; Cao Y; Zhang Y; Xu Z; Kwak IY; Boerwinkle E; Pan W G3 (Bethesda); 2016 Dec; 6(12):3941-3950. PubMed ID: 27678522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]