BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

685 related articles for article (PubMed ID: 33200838)

  • 21. Update on the pathogenesis of vitiligo.
    Marchioro HZ; Silva de Castro CC; Fava VM; Sakiyama PH; Dellatorre G; Miot HA
    An Bras Dermatol; 2022; 97(4):478-490. PubMed ID: 35643735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review.
    Białczyk A; Wełniak A; Kamińska B; Czajkowski R
    Mol Diagn Ther; 2023 Nov; 27(6):723-739. PubMed ID: 37737953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Regulatory Cell Death in Vitiligo.
    Liu LY; He SJ; Chen Z; Ge M; Lyu CY; Gao D; Yu JP; Cai MH; Yuan JX; Zhang JL
    DNA Cell Biol; 2024 Feb; 43(2):61-73. PubMed ID: 38153369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into immune mechanisms of vitiligo.
    Boniface K; Taïeb A; Seneschal J
    G Ital Dermatol Venereol; 2016 Feb; 151(1):44-54. PubMed ID: 26512930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?
    Xie H; Zhou F; Liu L; Zhu G; Li Q; Li C; Gao T
    J Dermatol Sci; 2016 Jan; 81(1):3-9. PubMed ID: 26387449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo.
    Tulic MK; Cavazza E; Cheli Y; Jacquel A; Luci C; Cardot-Leccia N; Hadhiri-Bzioueche H; Abbe P; Gesson M; Sormani L; Regazzetti C; Beranger GE; Lereverend C; Pons C; Khemis A; Ballotti R; Bertolotto C; Rocchi S; Passeron T
    Nat Commun; 2019 May; 10(1):2178. PubMed ID: 31097717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA-seq Reveals Dysregulation of Novel Melanocyte Genes upon Oxidative Stress: Implications in Vitiligo Pathogenesis.
    Sastry KS; Naeem H; Mokrab Y; Chouchane AI
    Oxid Med Cell Longev; 2019; 2019():2841814. PubMed ID: 31871544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative stress-induced calreticulin expression and translocation: new insights into the destruction of melanocytes.
    Zhang Y; Liu L; Jin L; Yi X; Dang E; Yang Y; Li C; Gao T
    J Invest Dermatol; 2014 Jan; 134(1):183-191. PubMed ID: 23771121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitiligo Pathogenesis and Emerging Treatments.
    Rashighi M; Harris JE
    Dermatol Clin; 2017 Apr; 35(2):257-265. PubMed ID: 28317534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response.
    He S; Xu J; Wu J
    Oxid Med Cell Longev; 2022; 2022():8796735. PubMed ID: 35096274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IFN-γ-induced PD-L1 expression on human melanocytes is impaired in vitiligo.
    Willemsen M; Krebbers G; Tjin EPM; Willemsen KJ; Louis A; Konijn VAL; Narayan VS; Post NF; Bakker WJ; Melief CJM; Bekkenk MW; Luiten RM
    Exp Dermatol; 2022 Apr; 31(4):556-566. PubMed ID: 34758170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte.
    Ng CY; Chan YP; Chiu YC; Shih HP; Lin YN; Chung PH; Huang JY; Chen HK; Chung WH; Ku CL
    J Dermatol Sci; 2023 Jun; 110(3):78-88. PubMed ID: 37221109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing.
    Zhang J; Xiang F; Ding Y; Hu W; Wang H; Zhang X; Lei Z; Li T; Wang P; Kang X
    BMC Genomics; 2024 Mar; 25(1):236. PubMed ID: 38438962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo.
    Shi Q; Zhang W; Guo S; Jian Z; Li S; Li K; Ge R; Dai W; Wang G; Gao T; Li C
    Cell Death Differ; 2016 Mar; 23(3):496-508. PubMed ID: 26315342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications.
    Chang WL; Ko CH
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occludin Promotes Adhesion of CD8
    Zou P; Xiao Y; Deng Q; Shi Y; You R; Pi Z; Liu J; Zhan Y; Zeng Q; Zeng Z; Xiao R
    Oxid Med Cell Longev; 2022; 2022():6732972. PubMed ID: 35222802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective effects of glutamine on human melanocyte oxidative stress model.
    Jiang L; Guo Z; Kong Y; Liang J; Wang Y; Wang K
    Indian J Dermatol Venereol Leprol; 2018; 84(3):269-274. PubMed ID: 29491190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Role of the NKG2D in Vitiligo.
    Plaza-Rojas L; Guevara-Patiño JA
    Front Immunol; 2021; 12():624131. PubMed ID: 33717132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The enigma and challenges of vitiligo pathophysiology and treatment.
    Abdel-Malek ZA; Jordan C; Ho T; Upadhyay PR; Fleischer A; Hamzavi I
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):778-787. PubMed ID: 32198977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melanocyte-specific, cytotoxic T cell responses in vitiligo: the effective variant of melanoma immunity?
    Garbelli S; Mantovani S; Palermo B; Giachino C
    Pigment Cell Res; 2005 Aug; 18(4):234-42. PubMed ID: 16029417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.