These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33200881)
21. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries. Chen D; Shen H; Chen D; Chen N; Meng Y ACS Appl Mater Interfaces; 2023 Jul; 15(26):31491-31501. PubMed ID: 37341213 [TBL] [Abstract][Full Text] [Related]
22. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721 [TBL] [Abstract][Full Text] [Related]
23. Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. Shrestha A; Hendriks KH; Sigman MS; Minteer SD; Sanford MS Chemistry; 2020 Apr; 26(24):5369-5373. PubMed ID: 32049389 [TBL] [Abstract][Full Text] [Related]
24. Redox Targeting-based Neutral Aqueous Flow Battery with High Energy Density and Low Cost. Yan S; Huang S; Xu H; Li L; Zou H; Ding M; Jia C; Wang Q ChemSusChem; 2023 Oct; 16(19):e202300710. PubMed ID: 37475569 [TBL] [Abstract][Full Text] [Related]
25. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610 [TBL] [Abstract][Full Text] [Related]
26. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. Hu B; DeBruler C; Rhodes Z; Liu TL J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765 [TBL] [Abstract][Full Text] [Related]
27. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression. Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334 [TBL] [Abstract][Full Text] [Related]
28. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Milton M; Cheng Q; Yang Y; Nuckolls C; Hernández Sánchez R; Sisto TJ Nano Lett; 2017 Dec; 17(12):7859-7863. PubMed ID: 29125302 [TBL] [Abstract][Full Text] [Related]
32. In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries. Ge G; Li F; Yang M; Zhao Z; Hou G; Zhang C; Li X Adv Mater; 2024 Oct; ():e2412197. PubMed ID: 39428902 [TBL] [Abstract][Full Text] [Related]
33. An Fe Tsitovich PB; Kosswattaarachchi AM; Crawley MR; Tittiris TY; Cook TR; Morrow JR Chemistry; 2017 Nov; 23(61):15327-15331. PubMed ID: 28929548 [TBL] [Abstract][Full Text] [Related]
34. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Yan Y; Robinson SG; Vaid TP; Sigman MS; Sanford MS J Am Chem Soc; 2021 Aug; 143(33):13450-13459. PubMed ID: 34387084 [TBL] [Abstract][Full Text] [Related]
35. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries. Huang S; Zhang H; Salla M; Zhuang J; Zhi Y; Wang X; Wang Q Nat Commun; 2022 Aug; 13(1):4746. PubMed ID: 35961966 [TBL] [Abstract][Full Text] [Related]
36. Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery. Nambafu GS; Hollas AM; Zhang S; Rice PS; Boglaienko D; Fulton JL; Li M; Huang Q; Zhu Y; Reed DM; Sprenkle VL; Li G Nat Commun; 2024 Mar; 15(1):2566. PubMed ID: 38528014 [TBL] [Abstract][Full Text] [Related]
37. Tuning Intermolecular Interactions to Enhance the Cyclability of Non-Aqueous, Organic Redox Flow Batteries. Zhang L; Liu Y; Chen Y; Zhu Y; Wang R; Dai G; Zhang X; Zhao Y Chem Asian J; 2022 Dec; 17(24):e202200901. PubMed ID: 36239205 [TBL] [Abstract][Full Text] [Related]
38. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. Yan Y; Sitaula P; Odom SA; Vaid TP ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441 [TBL] [Abstract][Full Text] [Related]
39. Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds. Cosimbescu L; Wei X; Vijayakumar M; Xu W; Helm ML; Burton SD; Sorensen CM; Liu J; Sprenkle V; Wang W Sci Rep; 2015 Sep; 5():14117. PubMed ID: 26374254 [TBL] [Abstract][Full Text] [Related]
40. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte. Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]