These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33200881)

  • 41. Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries.
    Li H; Fan H; Hu B; Hu L; Chang G; Song J
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):26971-26977. PubMed ID: 34647654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
    Burgess M; Moore JS; Rodríguez-López J
    Acc Chem Res; 2016 Nov; 49(11):2649-2657. PubMed ID: 27673336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient AcFc-[Fe
    Rahaman Mazumder MM; Islam R; Khan MAR; Anis-Ul-Haque KM; Rahman MM
    Chem Asian J; 2023 Jan; 18(1):e202201025. PubMed ID: 36354369
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications.
    Schrage BR; Zhang B; Petrochko SC; Zhao Z; Frkonja-Kuczin A; Boika A; Ziegler CJ
    Inorg Chem; 2021 Jul; 60(14):10764-10771. PubMed ID: 34210136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte.
    Hu B; Luo J; Hu M; Yuan B; Liu TL
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species.
    Gao M; Salla M; Song Y; Wang Q
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A stable organic dye catholyte for long-life aqueous flow batteries.
    Li H; Fan H; Ravivarma M; Hu B; Feng Y; Song J
    Chem Commun (Camb); 2020 Nov; 56(89):13824-13827. PubMed ID: 33079083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.
    Farag NL; Jethwa RB; Beardmore AE; Insinna T; O'Keefe CA; Klusener PAA; Grey CP; Wright DS
    ChemSusChem; 2023 Jul; 16(13):e202300128. PubMed ID: 36970847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries.
    Varenikov A; Gandelman M; Sigman MS
    J Am Chem Soc; 2024 Jul; 146(28):19474-19488. PubMed ID: 38963077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox-Active Eutectic Electrolyte with Viologen and Ferrocene Derivatives for Flow Batteries.
    Ghahremani R; Dean W; Sinclair N; Shen X; Starvaggi N; Alfurayj I; Burda C; Pentzer E; Wainright J; Savinell R; Gurkan B
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1148-1156. PubMed ID: 36563037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.
    Wei X; Xu W; Vijayakumar M; Cosimbescu L; Liu T; Sprenkle V; Wang W
    Adv Mater; 2014 Dec; 26(45):7649-53. PubMed ID: 25327755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient
    Bassil P; Floner D; Guiheneuf S; Paquin L; Geneste F
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36373-36379. PubMed ID: 38979971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zwitterionic Ferrocenes: An Approach for Redox Flow Battery (RFB) Catholytes.
    Zhang B; Schrage BR; Frkonja-Kuczin A; Gaire S; Popov IA; Ziegler CJ; Boika A
    Inorg Chem; 2022 May; 61(21):8117-8120. PubMed ID: 35584531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.
    Zhao Y; Ding Y; Song J; Li G; Dong G; Goodenough JB; Yu G
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11036-40. PubMed ID: 25164770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH.
    Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J
    Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries.
    Tang G; Liu Y; Li Y; Peng K; Zuo P; Yang Z; Xu T
    JACS Au; 2022 May; 2(5):1214-1222. PubMed ID: 35647585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere.
    Kong T; Liu J; Zhou X; Xu J; Xie Y; Chen J; Li X; Wang Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214819. PubMed ID: 36495124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Data science enabled discovery of a highly soluble 2,2'-bipyrimidine anolyte for application in a flow battery.
    Pancoast AR; McCormack SL; Galinat S; Walser-Kuntz R; Jett BM; Sanford MS; Sigman MS
    Chem Sci; 2023 Dec; 14(47):13734-13742. PubMed ID: 38075655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.