These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33200988)

  • 1. Forced choices reveal a trade-off between cognitive effort and physical pain.
    Vogel TA; Savelson ZM; Otto AR; Roy M
    Elife; 2020 Nov; 9():. PubMed ID: 33200988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-benefit trade-offs in decision-making and learning.
    Sidarus N; Palminteri S; Chambon V
    PLoS Comput Biol; 2019 Sep; 15(9):e1007326. PubMed ID: 31490934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.
    Klein-Flügge MC; Kennerley SW; Friston K; Bestmann S
    J Neurosci; 2016 Sep; 36(39):10002-15. PubMed ID: 27683898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modelling reveals distinct patterns of cognitive and physical motivation in elite athletes.
    Chong TT; Apps MAJ; Giehl K; Hall S; Clifton CH; Husain M
    Sci Rep; 2018 Aug; 8(1):11888. PubMed ID: 30089782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rewarding cognitive effort increases the intrinsic value of mental labor.
    Clay G; Mlynski C; Korb FM; Goschke T; Job V
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35101919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making.
    Chen X; Voets S; Jenkinson N; Galea JM
    J Neurosci; 2020 Jan; 40(3):661-670. PubMed ID: 31727795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopaminergic medication increases motivation to exert cognitive control by reducing subjective effort costs in Parkinson's patients.
    Bogdanov M; LoParco S; Otto AR; Sharp M
    Neurobiol Learn Mem; 2022 Sep; 193():107652. PubMed ID: 35724812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine restores cognitive motivation in Parkinson's disease.
    McGuigan S; Zhou SH; Brosnan MB; Thyagarajan D; Bellgrove MA; Chong TT
    Brain; 2019 Mar; 142(3):719-732. PubMed ID: 30689734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
    Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N
    Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.
    Nagase AM; Onoda K; Foo JC; Haji T; Akaishi R; Yamaguchi S; Sakai K; Morita K
    J Neurosci; 2018 Mar; 38(10):2631-2651. PubMed ID: 29431647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute pain and pain-related fear on risky decision-making and effort during cognitive tests.
    Barnhart WR; Buelow MT; Trost Z
    J Clin Exp Neuropsychol; 2019 Dec; 41(10):1033-1047. PubMed ID: 31366275
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of cognitive effort in subjective reward devaluation and risky decision-making.
    Apps MA; Grima LL; Manohar S; Husain M
    Sci Rep; 2015 Nov; 5():16880. PubMed ID: 26586084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computations and Connectivity Underlying Aversive Counterfactuals.
    Mills-Finnerty C; Hanson C; Khadr M; José Hanson S
    Brain Connect; 2020 Nov; 10(9):467-478. PubMed ID: 32842766
    [No Abstract]   [Full Text] [Related]  

  • 14. The Neural Basis of Aversive Pavlovian Guidance during Planning.
    Lally N; Huys QJM; Eshel N; Faulkner P; Dayan P; Roiser JP
    J Neurosci; 2017 Oct; 37(42):10215-10229. PubMed ID: 28924006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurocomputational mechanisms underlying subjective valuation of effort costs.
    Chong TT; Apps M; Giehl K; Sillence A; Grima LL; Husain M
    PLoS Biol; 2017 Feb; 15(2):e1002598. PubMed ID: 28234892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal striatum mediates cognitive control, not cognitive effort per se, in decision-making: An event-related fMRI study.
    Robertson BD; Hiebert NM; Seergobin KN; Owen AM; MacDonald PA
    Neuroimage; 2015 Jul; 114():170-84. PubMed ID: 25862263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive Fatigue Destabilizes Economic Decision Making Preferences and Strategies.
    Mullette-Gillman OA; Leong RL; Kurnianingsih YA
    PLoS One; 2015; 10(7):e0132022. PubMed ID: 26230404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural systems of cognitive demand avoidance.
    Sayalı C; Badre D
    Neuropsychologia; 2019 Feb; 123():41-54. PubMed ID: 29944865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effort Foraging Task reveals positive correlation between individual differences in the cost of cognitive and physical effort in humans.
    Bustamante LA; Oshinowo T; Lee JR; Tong E; Burton AR; Shenhav A; Cohen JD; Daw ND
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2221510120. PubMed ID: 38064507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into differing decision-making strategies that underlie cognitively effort-based decision making using computational modeling in rats.
    Hales CA; Silveira MM; Calderhead L; Mortazavi L; Hathaway BA; Winstanley CA
    Psychopharmacology (Berl); 2024 May; 241(5):947-962. PubMed ID: 38172238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.