These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 33200989)

  • 21. Dopaminergic Modulation of Decision Making and Subjective Well-Being.
    Rutledge RB; Skandali N; Dayan P; Dolan RJ
    J Neurosci; 2015 Jul; 35(27):9811-22. PubMed ID: 26156984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. State anxiety biases estimates of uncertainty and impairs reward learning in volatile environments.
    Hein TP; de Fockert J; Ruiz MH
    Neuroimage; 2021 Jan; 224():117424. PubMed ID: 33035670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
    Gold JM; Waltz JA; Matveeva TM; Kasanova Z; Strauss GP; Herbener ES; Collins AG; Frank MJ
    Arch Gen Psychiatry; 2012 Feb; 69(2):129-38. PubMed ID: 22310503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine prediction error responses integrate subjective value from different reward dimensions.
    Lak A; Stauffer WR; Schultz W
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2343-8. PubMed ID: 24453218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates.
    Skvortsova V; Palminteri S; Pessiglione M
    J Neurosci; 2014 Nov; 34(47):15621-30. PubMed ID: 25411490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing a computational model of subjective well-being: a preregistered replication of Rutledge et al. (2014).
    Vanhasbroeck N; Devos L; Pessers S; Kuppens P; Vanpaemel W; Moors A; Tuerlinckx F
    Cogn Emot; 2021 Jun; 35(4):822-835. PubMed ID: 33632071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dopamine role in learning and action inference.
    Bogacz R
    Elife; 2020 Jul; 9():. PubMed ID: 32633715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
    Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N
    Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How environmental regularities affect people's information search in probability judgments from experience.
    Hoffart JC; Rieskamp J; Dutilh G
    J Exp Psychol Learn Mem Cogn; 2019 Feb; 45(2):219-231. PubMed ID: 30024248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: a simulated robotic study.
    Mirolli M; Santucci VG; Baldassarre G
    Neural Netw; 2013 Mar; 39():40-51. PubMed ID: 23353115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Neurocomputational Account of How Inflammation Enhances Sensitivity to Punishments Versus Rewards.
    Harrison NA; Voon V; Cercignani M; Cooper EA; Pessiglione M; Critchley HD
    Biol Psychiatry; 2016 Jul; 80(1):73-81. PubMed ID: 26359113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology.
    Burr H; Formazin M; Pohrt A
    Scand J Work Environ Health; 2016 May; 42(3):251-5. PubMed ID: 26960179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissociating the contributions of reward-prediction errors to trial-level adaptation and long-term learning.
    Lohse KR; Miller MW; Daou M; Valerius W; Jones M
    Biol Psychol; 2020 Jan; 149():107775. PubMed ID: 31563586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions.
    Krugel LK; Biele G; Mohr PN; Li SC; Heekeren HR
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17951-6. PubMed ID: 19822738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "A" for Effort: Rewarding Effortful Retrieval Attempts Improves Learning From General Knowledge Errors in Women.
    Abraham D; McRae K; Mangels JA
    Front Psychol; 2019; 10():1179. PubMed ID: 31293466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine, Prediction Error and Beyond.
    Diederen KMJ; Fletcher PC
    Neuroscientist; 2021 Feb; 27(1):30-46. PubMed ID: 32338128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning.
    Correa CMC; Noorman S; Jiang J; Palminteri S; Cohen MX; Lebreton M; van Gaal S
    J Neurosci; 2018 Nov; 38(48):10338-10348. PubMed ID: 30327418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
    Morita K; Kato A
    Front Neural Circuits; 2014; 8():36. PubMed ID: 24782717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.