BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33200998)

  • 1. Design and Printing of a Low-Cost 3D-Printed Nasal Osteotomy Training Model: Development and Feasibility Study.
    Ho M; Goldfarb J; Moayer R; Nwagu U; Ganti R; Krein H; Heffelfinger R; Hutchinson ML
    JMIR Med Educ; 2020 Nov; 6(2):e19792. PubMed ID: 33200998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, printing optimization, and material testing of a 3D-printed nasal osteotomy task trainer.
    Schlegel L; Malani E; Belko S; Kumar A; Barbarite E; Krein H; Heffelfinger R; Hutchinson M; Pugliese R
    3D Print Med; 2023 Jul; 9(1):20. PubMed ID: 37439899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tap-Tap: Learning Endonasal and Percutaneous Nasal Osteotomy Techniques on 3D-Printed Midface Models.
    Schlegel L; Kumar A; Christopher V; Belko S; Barbarite E; Pugliese R; Krein H; Hutchinson M; Heffelfinger R
    Otolaryngol Head Neck Surg; 2023 Jun; 168(6):1580-1583. PubMed ID: 36939489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-Specific 3-Dimensional Printed Models for Planning Nasal Osteotomy to Correct Nasal Deformities Due to Trauma.
    Jung YG; Park H; Seo J
    OTO Open; 2020; 4(2):2473974X20924342. PubMed ID: 32537552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step-Specific Simulation: The Utility of 3D Printing for the Fabrication of a Low-Cost, Learning Needs-Based Rhinoplasty Simulator.
    Zammit D; Safran T; Ponnudurai N; Jaberi M; Chen L; Noel G; Gilardino MS
    Aesthet Surg J; 2020 May; 40(6):NP340-NP345. PubMed ID: 32064498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printing a cost-effective model for mastoidectomy training.
    Frithioff A; Weiss K; Frendø M; Senn P; Mikkelsen PT; Sieber D; Sørensen MS; Pedersen DB; Andersen SAW
    3D Print Med; 2023 Apr; 9(1):12. PubMed ID: 37062800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed temporal bone as a tool for otologic surgery simulation.
    Gadaleta DJ; Huang D; Rankin N; Hsue V; Sakkal M; Bovenzi C; Huntley CT; Willcox T; Pelosi S; Pugliese R; Ku B
    Am J Otolaryngol; 2020; 41(3):102273. PubMed ID: 32209234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Production Nasal Osteotomy Simulators With Multi-Modality Manufacturing: 3D Printing, Casting, and Molding.
    Tumlin P; Sunyecz I; Cui R; Armeni M; Freiser ME
    Otolaryngol Head Neck Surg; 2024 Jun; ():. PubMed ID: 38943441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cost-Effective, In-House, Positioning and Cutting Guide System for Orthognathic Surgery.
    McAllister P; Watson M; Burke E
    J Maxillofac Oral Surg; 2018 Mar; 17(1):112-114. PubMed ID: 29383005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteotomy training for dental students using three-dimensional simulation software and maxillofacial three-dimensional-printed models.
    Yoshida S; Watanabe A; Sugahara K; Odaka K; Katakura A; Takano M
    J Dent Educ; 2022 May; 86(5):526-534. PubMed ID: 34978716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.
    Mowry SE; Jammal H; Myer C; Solares CA; Weinberger P
    Otol Neurotol; 2015 Sep; 36(9):1562-5. PubMed ID: 26375979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Three-dimensional Printed Low-cost Anterior Shoulder Dislocation Model for Ultrasound-guided Injection Training.
    Risler Z; Magee MA; Mazza JM; Goodsell K; Au AK; Lewiss RE; Pugliese RS; Ku B
    Cureus; 2018 Nov; 10(11):e3536. PubMed ID: 30648069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility, Accuracy and Effect of Autoclave Sterilization on a Thermoplastic Three-Dimensional Model Printed by a Desktop Fused Deposition Modelling Three-Dimensional Printer.
    Boursier JF; Fournet A; Bassanino J; Manassero M; Bedu AS; Leperlier D
    Vet Comp Orthop Traumatol; 2018 Nov; 31(6):422-430. PubMed ID: 30300914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation and validation of three-dimensional printed models for basic nasal endoscopic training.
    Zhuo C; Lei L; Yulin Z; Wentao L; Shuangxia W; Chao W; Yaqian Z; Shuman H; Dong D
    Int Forum Allergy Rhinol; 2019 Jun; 9(6):695-701. PubMed ID: 30748103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of 3D printing in surgical education for robotic urology procedures.
    Ghazi AE; Teplitz BA
    Transl Androl Urol; 2020 Apr; 9(2):931-941. PubMed ID: 32420209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Data to Design: Constructing Scapula and Hip Bone Through Online Datasets, Open-Source Software and 3D Printers.
    Rathia DS; Konuri VK
    Cureus; 2024 May; 16(5):e60212. PubMed ID: 38746485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional (3D) printed endovascular simulation models: a feasibility study.
    Mafeld S; Nesbitt C; McCaslin J; Bagnall A; Davey P; Bose P; Williams R
    Ann Transl Med; 2017 Feb; 5(3):42. PubMed ID: 28251121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SpineBox: A Freely Available, Open-access, 3D-printed Simulator Design for Lumbar Pedicle Screw Placement.
    Clifton W; Damon A; Valero-Moreno F; Nottmeier E; Pichelmann M
    Cureus; 2020 Apr; 12(4):e7738. PubMed ID: 32455058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Future of Biomechanical Spine Research: Conception and Design of a Dynamic 3D Printed Cervical Myelography Phantom.
    Clifton W; Nottmeier E; Damon A; Dove C; Pichelmann M
    Cureus; 2019 May; 11(5):e4591. PubMed ID: 31309016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low-Cost 3D-Printed Tool with Multiaxial/Angular Vessel Orientation for Microvascular Anastomosis Training.
    Alshomer F; Alhazmi B; Alowais F; Aldekhayel S
    Plast Reconstr Surg Glob Open; 2020 Feb; 8(2):e2567. PubMed ID: 32309067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.