BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33200998)

  • 21. Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation.
    Doucet G; Ryan S; Bartellas M; Parsons M; Dubrowski A; Renouf T
    Cureus; 2017 Aug; 9(8):e1575. PubMed ID: 29057187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-cost Design and Manufacturing of Surgical Guides for Mandibular Reconstruction Using a Fibula.
    Numajiri T; Nakamura H; Sowa Y; Nishino K
    Plast Reconstr Surg Glob Open; 2016 Jul; 4(7):e805. PubMed ID: 27536484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using 3D Printing Technology to Teach Cartilage Framework Carving for Ear Reconstruction.
    Jovic TH; Combellack EJ; Jessop ZM; Whitaker IS
    Front Surg; 2020; 7():44. PubMed ID: 32766275
    [No Abstract]   [Full Text] [Related]  

  • 24. A feasibility study for using ABS plastic and a low-cost 3D printer for patient-specific brachytherapy mould design.
    Harris BD; Nilsson S; Poole CM
    Australas Phys Eng Sci Med; 2015 Sep; 38(3):399-412. PubMed ID: 26108891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cost-Effective Method for 3-Dimensional Printing Dynamic Multiobject and Patient-Specific Brain Tumor Models: Technical Note.
    Damon A; Clifton W; Valero-Moreno F; Quinones-Hinojosa A
    World Neurosurg; 2020 Aug; 140():173-179. PubMed ID: 32360916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Feasibility Study for the Production of Three-dimensional-printed Spine Models Using Simultaneously Extruded Thermoplastic Polymers.
    Clifton W; Nottmeier E; Damon A; Dove C; Chen SG; Pichelmann M
    Cureus; 2019 Apr; 11(4):e4440. PubMed ID: 31205831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing cost and print time estimates for six commercially-available 3D printers obtained through slicing software for clinically relevant anatomical models.
    Chen JV; Dang ABC; Dang A
    3D Print Med; 2021 Jan; 7(1):1. PubMed ID: 33404847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-House Surgeon-Led Virtual Surgical Planning for Maxillofacial Reconstruction.
    Abo Sharkh H; Makhoul N
    J Oral Maxillofac Surg; 2020 Apr; 78(4):651-660. PubMed ID: 31843280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic review of three-dimensional printing for simulation training of interventional radiology trainees.
    Tenewitz C; Le RT; Hernandez M; Baig S; Meyer TE
    3D Print Med; 2021 Apr; 7(1):10. PubMed ID: 33881672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation of laryngotracheal reconstruction with 3D-printed models and porcine cadaveric models.
    Falls M; Vincze J; Brown J; Witsberger C; Discolo C; Partain M; Rosen P; Ting J; Zopf D
    Laryngoscope Investig Otolaryngol; 2022 Oct; 7(5):1603-1610. PubMed ID: 36258885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of a 3D-printed human temporal bone model for otology surgical skill training.
    Chien WW; da Cruz MJ; Francis HW
    World J Otorhinolaryngol Head Neck Surg; 2021 Apr; 7(2):88-93. PubMed ID: 33997717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomical 3D-Printed Silicone Prostate Gland Models and Rectal Examination Task Trainer for the Training of Medical Residents and Undergraduate Medical Students.
    DeZeeuw J; O'Regan NB; Goudie C; Organ M; Dubrowski A
    Cureus; 2020 Jul; 12(7):e9020. PubMed ID: 32775100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review.
    Meglioli M; Naveau A; Macaluso GM; Catros S
    3D Print Med; 2020 Oct; 6(1):30. PubMed ID: 33079298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the Infill Design on the Tensile Response of 3D Printed Polylactic Acid Polymer.
    Harpool TD; Alarifi IM; Alshammari BA; Aabid A; Baig M; Malik RA; Mohamed Sayed A; Asmatulu R; El-Bagory TMAA
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning.
    Velasco I; Vahdani S; Ramos H
    J Clin Exp Dent; 2017 Sep; 9(9):e1103-e1108. PubMed ID: 29075412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training.
    Chen SA; Ong CS; Malguria N; Vricella LA; Garcia JR; Hibino N
    World J Pediatr Congenit Heart Surg; 2018 Jul; 9(4):454-458. PubMed ID: 29945510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.
    Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Use of 3D Printed Vasculature for Simulation-based Medical Education Within Interventional Radiology.
    Goudie C; Kinnin J; Bartellas M; Gullipalli R; Dubrowski A
    Cureus; 2019 Apr; 11(4):e4381. PubMed ID: 31218145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pediatric laryngeal simulator using 3D printed models: A novel technique.
    Kavanagh KR; Cote V; Tsui Y; Kudernatsch S; Peterson DR; Valdez TA
    Laryngoscope; 2017 Apr; 127(4):E132-E137. PubMed ID: 27730649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel open-source 3D-printed eye mount (TEMPO) for the ophthalmology wet lab.
    Mak M; Hong Y; Trask WM; Thompson R; Chung H; Warrian KJ
    BMJ Open Ophthalmol; 2021; 6(1):e000685. PubMed ID: 34786484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.