BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33201088)

  • 1. Machine Learning for Surgical Phase Recognition: A Systematic Review.
    Garrow CR; Kowalewski KF; Li L; Wagner M; Schmidt MW; Engelhardt S; Hashimoto DA; Kenngott HG; Bodenstedt S; Speidel S; Müller-Stich BP; Nickel F
    Ann Surg; 2021 Apr; 273(4):684-693. PubMed ID: 33201088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark.
    Wagner M; Müller-Stich BP; Kisilenko A; Tran D; Heger P; Mündermann L; Lubotsky DM; Müller B; Davitashvili T; Capek M; Reinke A; Reid C; Yu T; Vardazaryan A; Nwoye CI; Padoy N; Liu X; Lee EJ; Disch C; Meine H; Xia T; Jia F; Kondo S; Reiter W; Jin Y; Long Y; Jiang M; Dou Q; Heng PA; Twick I; Kirtac K; Hosgor E; Bolmgren JL; Stenzel M; von Siemens B; Zhao L; Ge Z; Sun H; Xie D; Guo M; Liu D; Kenngott HG; Nickel F; Frankenberg MV; Mathis-Ullrich F; Kopp-Schneider A; Maier-Hein L; Speidel S; Bodenstedt S
    Med Image Anal; 2023 May; 86():102770. PubMed ID: 36889206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A boosted segmentation method for surgical workflow analysis.
    Padoy N; Blum T; Essa I; Feussner H; Berger MO; Navab N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):102-9. PubMed ID: 18051049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and online recognition of surgical phases using Hidden Markov Models.
    Blum T; Padoy N; Feussner H; Navab N
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):627-35. PubMed ID: 18982657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic data-driven real-time segmentation and recognition of surgical workflow.
    Dergachyova O; Bouget D; Huaulmé A; Morandi X; Jannin P
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1081-9. PubMed ID: 26995598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRTD: long-range temporal dependency based active learning for surgical workflow recognition.
    Shi X; Jin Y; Dou Q; Heng PA
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1573-1584. PubMed ID: 32588246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated operative workflow analysis of endoscopic pituitary surgery using machine learning: development and preclinical evaluation (IDEAL stage 0).
    Khan DZ; Luengo I; Barbarisi S; Addis C; Culshaw L; Dorward NL; Haikka P; Jain A; Kerr K; Koh CH; Layard Horsfall H; Muirhead W; Palmisciano P; Vasey B; Stoyanov D; Marcus HJ
    J Neurosurg; 2022 Jul; 137(1):51-58. PubMed ID: 34740198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided anatomy recognition in intrathoracic and -abdominal surgery: a systematic review.
    den Boer RB; de Jongh C; Huijbers WTE; Jaspers TJM; Pluim JPW; van Hillegersberg R; Van Eijnatten M; Ruurda JP
    Surg Endosc; 2022 Dec; 36(12):8737-8752. PubMed ID: 35927354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active learning using deep Bayesian networks for surgical workflow analysis.
    Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence-based automated laparoscopic cholecystectomy surgical phase recognition and analysis.
    Cheng K; You J; Wu S; Chen Z; Zhou Z; Guan J; Peng B; Wang X
    Surg Endosc; 2022 May; 36(5):3160-3168. PubMed ID: 34231066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
    Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F
    Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence software available for medical devices: surgical phase recognition in laparoscopic cholecystectomy.
    Shinozuka K; Turuda S; Fujinaga A; Nakanuma H; Kawamura M; Matsunobu Y; Tanaka Y; Kamiyama T; Ebe K; Endo Y; Etoh T; Inomata M; Tokuyasu T
    Surg Endosc; 2022 Oct; 36(10):7444-7452. PubMed ID: 35266049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assisted phase and step annotation for surgical videos.
    Lecuyer G; Ragot M; Martin N; Launay L; Jannin P
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):673-680. PubMed ID: 32040704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach.
    Kitaguchi D; Takeshita N; Matsuzaki H; Takano H; Owada Y; Enomoto T; Oda T; Miura H; Yamanashi T; Watanabe M; Sato D; Sugomori Y; Hara S; Ito M
    Surg Endosc; 2020 Nov; 34(11):4924-4931. PubMed ID: 31797047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for the annotation of surgical videos for supervised machine learning applications.
    Fischer E; Jawed KJ; Cleary K; Balu A; Donoho A; Thompson Gestrich W; Donoho DA
    Int J Comput Assist Radiol Surg; 2023 Sep; 18(9):1673-1678. PubMed ID: 37245179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TEsoNet: knowledge transfer in surgical phase recognition from laparoscopic sleeve gastrectomy to the laparoscopic part of Ivor-Lewis esophagectomy.
    Eckhoff JA; Ban Y; Rosman G; Müller DT; Hashimoto DA; Witkowski E; Babic B; Rus D; Bruns C; Fuchs HF; Meireles O
    Surg Endosc; 2023 May; 37(5):4040-4053. PubMed ID: 36932188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of sensor-based real-time workflow recognition in laparoscopic cholecystectomy.
    Kranzfelder M; Schneider A; Fiolka A; Koller S; Reiser S; Vogel T; Wilhelm D; Feussner H
    Int J Comput Assist Radiol Surg; 2014 Nov; 9(6):941-8. PubMed ID: 24558003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIcro-surgical anastomose workflow recognition challenge report.
    Huaulmé A; Sarikaya D; Le Mut K; Despinoy F; Long Y; Dou Q; Chng CB; Lin W; Kondo S; Bravo-Sánchez L; Arbeláez P; Reiter W; Mitsuishi M; Harada K; Jannin P
    Comput Methods Programs Biomed; 2021 Nov; 212():106452. PubMed ID: 34688174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.