BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33201159)

  • 1. Preferential location of zirconium dopants in cerium dioxide nanoparticles and the effects of doping on their reducibility: a DFT study.
    Koleva IZ; Aleksandrov HA; Neyman KM; Vayssilov GN
    Phys Chem Chem Phys; 2020 Nov; 22(45):26568-26582. PubMed ID: 33201159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and reducibility of yttrium-doped cerium dioxide nanoparticles and (111) surface.
    Aleksandrov HA; Koleva IZ; Neyman KM; Tabakova TT; Vayssilov GN
    RSC Adv; 2018 Sep; 8(59):33728-33741. PubMed ID: 36188438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and chemical transformations of zirconium doped ceria nanoparticles in the presence of phosphate: Increasing realism in environmental fate and behaviour experiments.
    Briffa SM; Lynch I; Hapiuk D; Valsami-Jones E
    Environ Pollut; 2019 Sep; 252(Pt B):974-981. PubMed ID: 31252136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces.
    Li M; Tumuluri U; Wu Z; Dai S
    ChemSusChem; 2015 Nov; 8(21):3651-60. PubMed ID: 26403156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative stability and reducibility of CeO2 and Rh/CeO2 species on the surface and in the cavities of γ-Al2O3: a periodic DFT study.
    Koleva IZ; Aleksandrov HA; Vayssilov GN; Duarte R; van Bokhoven JA
    Phys Chem Chem Phys; 2015 Sep; 17(34):22389-401. PubMed ID: 26249662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-classical behaviour of higher valence dopants in chromium (III) oxide by a Cr vacancy compensation mechanism.
    Carey JJ; Nolan M
    J Phys Condens Matter; 2017 Oct; 29(41):415501. PubMed ID: 28745616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional studies of model cerium oxide nanoparticles.
    Loschen C; Migani A; Bromley ST; Illas F; Neyman KM
    Phys Chem Chem Phys; 2008 Oct; 10(37):5730-8. PubMed ID: 18956108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-doped ceria nanoparticles: stability and redox processes.
    Figueroba A; Bruix A; Kovács G; Neyman KM
    Phys Chem Chem Phys; 2017 Aug; 19(32):21729-21738. PubMed ID: 28776626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance.
    Wang F; Chen D; Zhang N; Wang S; Qin L; Sun X; Huang Y
    J Colloid Interface Sci; 2017 Dec; 508():237-247. PubMed ID: 28841482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation.
    Wang HF; Li HY; Gong XQ; Guo YL; Lu GZ; Hu P
    Phys Chem Chem Phys; 2012 Dec; 14(48):16521-35. PubMed ID: 23080297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural and electronic properties of nanostructured Ce1-x-yZrxTbyO2 ternary oxides: unusual concentration of Tb3+ and metal<-->oxygen<-->metal interactions.
    Wang X; Hanson JC; Rodriguez JA; Belver C; Fernández-García M
    J Chem Phys; 2005 Apr; 122(15):154711. PubMed ID: 15945660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectromicroscopic evidence of interstitial and substitutional dopants in association with oxygen vacancies in Sm-doped ceria nanoparticles.
    Chen SY; Chen RJ; Lee W; Dong CL; Gloter A
    Phys Chem Chem Phys; 2014 Feb; 16(7):3274-81. PubMed ID: 24413060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06.
    Krcha MD; Janik MJ
    Langmuir; 2013 Aug; 29(32):10120-31. PubMed ID: 23848253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Structure of Oxygen Vacancies in the Near-Surface of Reduced CeO
    Han ZK; Zhang L; Liu M; Ganduglia-Pirovano MV; Gao Y
    Front Chem; 2019; 7():436. PubMed ID: 31275923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of deposited Pt particles on the reducibility of CeO2(111).
    Bruix A; Migani A; Vayssilov GN; Neyman KM; Libuda J; Illas F
    Phys Chem Chem Phys; 2011 Jun; 13(23):11384-92. PubMed ID: 21589983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopant-mediated oxygen vacancy tuning in ceria nanoparticles.
    Babu S; Thanneeru R; Inerbaev T; Day R; Masunov AE; Schulte A; Seal S
    Nanotechnology; 2009 Feb; 20(8):085713. PubMed ID: 19417474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Ni Doping at Atom Scale in Ceria and Assembling into Well-Defined Lotuslike Structure for Enhanced Catalytic Performance.
    Li Q; Huang Z; Guan P; Su R; Cao Q; Chao Y; Shen W; Guo J; Xu H; Che R
    ACS Appl Mater Interfaces; 2017 May; 9(19):16243-16251. PubMed ID: 28445645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O vacancies on steps on the CeO2(111) surface.
    Kozlov SM; Neyman KM
    Phys Chem Chem Phys; 2014 May; 16(17):7823-9. PubMed ID: 24643571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Li+ and Zr4+ cations in the catalytic performances of Co(1-x)M(x)Cr(2)O(4) (M = Li, Zr; x = 0-0.2) for methane combustion.
    Chen J; Shi W; Zhang X; Arandiyan H; Li D; Li J
    Environ Sci Technol; 2011 Oct; 45(19):8491-7. PubMed ID: 21877726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroatom doping effects on interaction of H
    Murakami K; Ogo S; Ishikawa A; Takeno Y; Higo T; Tsuneki H; Nakai H; Sekine Y
    J Chem Phys; 2020 Jan; 152(1):014707. PubMed ID: 31914759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.