These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pool size ratio of the substantia nigra in Parkinson's disease derived from two different quantitative magnetization transfer approaches. Trujillo P; Summers PE; Smith AK; Smith SA; Mainardi LT; Cerutti S; Claassen DO; Costa A Neuroradiology; 2017 Dec; 59(12):1251-1263. PubMed ID: 28986653 [TBL] [Abstract][Full Text] [Related]
3. Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI. Wang F; Katagiri D; Li K; Takahashi K; Wang S; Nagasaka S; Li H; Quarles CC; Zhang MZ; Shimizu A; Gore JC; Harris RC; Takahashi T Magn Reson Med; 2018 Dec; 80(6):2655-2669. PubMed ID: 29845659 [TBL] [Abstract][Full Text] [Related]
4. Noninvasive quantitative magnetization transfer MRI reveals tubulointerstitial fibrosis in murine kidney. Wang F; Wang S; Zhang Y; Li K; Harris RC; Gore JC; Zhang MZ NMR Biomed; 2019 Nov; 32(11):e4128. PubMed ID: 31355979 [TBL] [Abstract][Full Text] [Related]
5. A dual flip angle 3D bSSFP magnetization transfer-like method to differentiate between recent and old myocardial infarction. Germain P; El Ghannudi S; Labani A; Jeung MY; Gangi A; Ohlmann P; Roy C J Magn Reson Imaging; 2018 Mar; 47(3):798-808. PubMed ID: 28727209 [TBL] [Abstract][Full Text] [Related]
6. [Late gadolinium enhancement and T1 mapping for the diagnosis of cardiac amyloidosis]. Cui Q; Yu J; Shen W Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Dec; 31(12):1538-1541. PubMed ID: 32029045 [TBL] [Abstract][Full Text] [Related]
7. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar. Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661 [TBL] [Abstract][Full Text] [Related]
8. Free-breathing combined three-dimensional phase sensitive late gadolinium enhancement and T1 mapping for myocardial tissue characterization. Weingärtner S; Akçakaya M; Roujol S; Basha T; Tschabrunn C; Berg S; Anter E; Nezafat R Magn Reson Med; 2015 Oct; 74(4):1032-41. PubMed ID: 25324205 [TBL] [Abstract][Full Text] [Related]
9. Synthetic late gadolinium enhancement cardiac magnetic resonance for diagnosing myocardial scar. Abdula G; Nickander J; Sörensson P; Lundin M; Kellman P; Sigfridsson A; Ugander M Scand Cardiovasc J; 2018 Jun; 52(3):127-132. PubMed ID: 29544374 [TBL] [Abstract][Full Text] [Related]
10. Assessment of late gadolinium enhancement in nonischemic cardiomyopathy: comparison of a fast Phase-Sensitive Inversion Recovery Sequence (PSIR) and a conventional segmented 2D gradient echo recall (GRE) sequence--preliminary findings. Elgeti T; Abdel-Aty H; Wagner M; Busjahn A; Schulz-Menger J; Kivelitz D; Dietz R; Hamm B Invest Radiol; 2007 Oct; 42(10):671-5. PubMed ID: 17984763 [TBL] [Abstract][Full Text] [Related]
11. Non-contrast myocardial infarct scar assessment using a hybrid native T Duan C; Zhu Y; Jang J; Rodriguez J; Neisius U; Fahmy AS; Nezafat R Magn Reson Med; 2019 May; 81(5):3192-3201. PubMed ID: 30565296 [TBL] [Abstract][Full Text] [Related]
12. Rapid framework for quantitative magnetization transfer imaging with interslice magnetization transfer and dictionary-driven fitting approaches. Kim JW; Lee SL; Choi SH; Park SH Magn Reson Med; 2019 Nov; 82(5):1671-1683. PubMed ID: 31183887 [TBL] [Abstract][Full Text] [Related]
13. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. Muscogiuri G; Rehwald WG; Schoepf UJ; Suranyi P; Litwin SE; De Cecco CN; Wichmann JL; Mangold S; Caruso D; Fuller SR; Bayer Nd RR; Varga-Szemes A J Magn Reson Imaging; 2017 May; 45(5):1429-1437. PubMed ID: 27690324 [TBL] [Abstract][Full Text] [Related]
14. REPAIRit: Improving Myocardial Nulling and Ghosting Artifacts of 3D Navigator-Gated Late Gadolinium Enhancement Imaging During Arrhythmia. Hu C; Huber S; Latif SR; Santacana-Laffitte G; Mojibian HR; Baldassarre LA; Peters DC J Magn Reson Imaging; 2019 Mar; 49(3):688-699. PubMed ID: 30252987 [TBL] [Abstract][Full Text] [Related]
15. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation. Beliveau P; Cheriet F; Anderson SA; Taylor JL; Arai AE; Hsu LY Comput Biol Med; 2015 Oct; 65():103-13. PubMed ID: 26313531 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive evaluation of macroscopic and microscopic myocardial fibrosis by cardiac MR: intra-individual comparison of gadobutrol versus gadoterate meglumine. Rahsepar AA; Ghasemiesfe A; Suwa K; Dolan RS; Shehata ML; Korell MJ; Naresh NK; Markl M; Collins JD; Carr JC Eur Radiol; 2019 Aug; 29(8):4357-4367. PubMed ID: 30617490 [TBL] [Abstract][Full Text] [Related]
18. Quantitative magnetization transfer imaging of the human locus coeruleus. Trujillo P; Petersen KJ; Cronin MJ; Lin YC; Kang H; Donahue MJ; Smith SA; Claassen DO Neuroimage; 2019 Oct; 200():191-198. PubMed ID: 31233908 [TBL] [Abstract][Full Text] [Related]
20. Non-breath-hold fast spin-echo versus breath-hold fast spin-echo and spoiled gradient-recalled echo MR imaging in the detection of hepatic tumors: correlation with surgical findings. Soyer P; Gouhiri M; Rondeau Y; Spelle L; Mosnier H; Scherrer A AJR Am J Roentgenol; 1997 May; 168(5):1199-204. PubMed ID: 9129411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]