These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33201598)

  • 1. Byproducts formed During Thiol-Acrylate Reactions Promoted by Nucleophilic Aprotic Amines: Persistent or Reactive?
    Drogkaris V; Northrop BH
    Chempluschem; 2020 Nov; 85(11):2466-2474. PubMed ID: 33201598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Nucleophile Byproduct Formation during Phosphine- and Amine-Promoted Thiol-Methyl Acrylate Reactions.
    Frayne SH; Northrop BH
    J Org Chem; 2018 Sep; 83(17):10370-10382. PubMed ID: 30132329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation and Demonstration of Catalyst/Initiator-Driven Selectivity in Thiol-Michael Reactions.
    Frayne SH; Murthy RR; Northrop BH
    J Org Chem; 2017 Aug; 82(15):7946-7956. PubMed ID: 28695735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Centered Nucleophile Catalyzed Thiol-Vinylsulfone Addition, Another Thiol-ene "Click" Reaction.
    Xi W; Wang C; Kloxin CJ; Bowman CN
    ACS Macro Lett; 2012 Jul; 1(7):811-814. PubMed ID: 35607123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organocatalytic Michael Addition as a Method for Polyisobutylene Chain-End Functionalization.
    Kulai I; Karpus A; Bergbreiter DE; Al-Hashimi M; Bazzi HS
    Macromol Rapid Commun; 2020 Sep; 41(17):e2000382. PubMed ID: 32803838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Dihalogens Catalyze Michael Addition Reactions.
    Hamlin TA; Fernández I; Bickelhaupt FM
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8922-8926. PubMed ID: 31033118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative First-Principles Kinetic Modeling of the Aza-Michael Addition to Acrylates in Polar Aprotic Solvents.
    Desmet GB; D'hooge DR; Omurtag PS; Espeel P; Marin GB; Du Prez FE; Reyniers MF
    J Org Chem; 2016 Dec; 81(24):12291-12302. PubMed ID: 27978758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical studies of selective thiol-ene and thiol-yne click reactions involving N-substituted maleimides.
    Stolz RM; Northrop BH
    J Org Chem; 2013 Aug; 78(16):8105-16. PubMed ID: 23924266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of the Reaction of Michael Acceptors with Biologically Important Nucleophiles.
    Hearn BR; Fontaine SD; Schneider EL; Kraemer Y; Ashley GW; Santi DV
    Bioconjug Chem; 2021 Apr; 32(4):794-800. PubMed ID: 33822591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Tg Thiol-Click Thermoset Networks via the Thiol-Maleimide Michael Addition.
    Parker S; Reit R; Abitz H; Ellson G; Yang K; Lund B; Voit WE
    Macromol Rapid Commun; 2016 Jul; 37(13):1027-32. PubMed ID: 27168131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-initiated thiol-ene click reactions as a potential strategy for incorporation of [M(I)(CO)3]+ (M = Re, (99m)Tc) complexes.
    Hayes TR; Lyon PA; Silva-Lopez E; Twamley B; Benny PD
    Inorg Chem; 2013 Mar; 52(6):3259-67. PubMed ID: 23445468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is Isoeugenol a Prehapten? Characterization of a Thiol-Reactive Oxidative Byproduct of Isoeugenol and Potential Implications for Skin Sensitization.
    Ahn J; Avonto C; Chittiboyina AG; Khan IA
    Chem Res Toxicol; 2020 Apr; 33(4):948-954. PubMed ID: 32119530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine Induced Retardation of the Radical-Mediated Thiol-Ene Reaction via the Formation of Metastable Disulfide Radical Anions.
    Love DM; Kim K; Goodrich JT; Fairbanks BD; Worrell BT; Stoykovich MP; Musgrave CB; Bowman CN
    J Org Chem; 2018 Mar; 83(5):2912-2919. PubMed ID: 29390175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophilic catalysis with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for the esterification of carboxylic acids with dimethyl carbonate.
    Shieh WC; Dell S; Repic O
    J Org Chem; 2002 Apr; 67(7):2188-91. PubMed ID: 11925227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and Reaction Mechanism of Biothiols Involved in S
    Campodónico PR; Alarcón-Espósito J; Olivares B
    Front Chem; 2022; 10():854918. PubMed ID: 35755252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of some strong N-bases with chloropentafluorobenzene in the presence of water molecules.
    Gierczyk B; Schroeder G; Brzezinski B
    J Org Chem; 2003 Apr; 68(8):3139-44. PubMed ID: 12688784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A library of new organofunctional silanes obtained by thiol-(meth)acrylate Michael addition reaction.
    Przybylska A; Szymańska A; Maciejewski H
    RSC Adv; 2023 May; 13(20):14010-14017. PubMed ID: 37181512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulbactam forms only minimal amounts of irreversible acrylate-enzyme with SHV-1 beta-lactamase.
    Totir MA; Helfand MS; Carey MP; Sheri A; Buynak JD; Bonomo RA; Carey PR
    Biochemistry; 2007 Aug; 46(31):8980-7. PubMed ID: 17630699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.
    Knap AK; Pratt RF
    Proteins; 1989; 6(3):316-23. PubMed ID: 2695930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.