These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 33201894)
1. Inhibition of the de novo pyrimidine biosynthesis pathway limits ribosomal RNA transcription causing nucleolar stress in glioblastoma cells. Lafita-Navarro MC; Venkateswaran N; Kilgore JA; Kanji S; Han J; Barnes S; Williams NS; Buszczak M; Burma S; Conacci-Sorrell M PLoS Genet; 2020 Nov; 16(11):e1009117. PubMed ID: 33201894 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Geigenberger P; Regierer B; Nunes-Nesi A; Leisse A; Urbanczyk-Wochniak E; Springer F; van Dongen JT; Kossmann J; Fernie AR Plant Cell; 2005 Jul; 17(7):2077-88. PubMed ID: 15951490 [TBL] [Abstract][Full Text] [Related]
3. Uracil nucleotide synthesis in a human breast cancer cell line (MCF-7) and in two drug-resistant sublines that contain increased levels of enzymes of the de novo pyrimidine pathway. Karle JM; Cowan KH; Chisena CA; Cysyk RL Mol Pharmacol; 1986 Aug; 30(2):136-41. PubMed ID: 2874477 [TBL] [Abstract][Full Text] [Related]
4. Miller (Genee-Wiedemann) syndrome represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH. Rainger J; Bengani H; Campbell L; Anderson E; Sokhi K; Lam W; Riess A; Ansari M; Smithson S; Lees M; Mercer C; McKenzie K; Lengfeld T; Gener Querol B; Branney P; McKay S; Morrison H; Medina B; Robertson M; Kohlhase J; Gordon C; Kirk J; Wieczorek D; Fitzpatrick DR Hum Mol Genet; 2012 Sep; 21(18):3969-83. PubMed ID: 22692683 [TBL] [Abstract][Full Text] [Related]
5. Chemotherapeutic inhibitors of the enzymes of the de novo pyrimidine pathway. Kensler TW; Cooney DA Adv Pharmacol Chemother; 1981; 18():273-352. PubMed ID: 6119898 [No Abstract] [Full Text] [Related]
6. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. Evans DR; Guy HI J Biol Chem; 2004 Aug; 279(32):33035-8. PubMed ID: 15096496 [No Abstract] [Full Text] [Related]
7. Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. He T; Haapa-Paananen S; Kaminskyy VO; Kohonen P; Fey V; Zhivotovsky B; Kallioniemi O; Perälä M Oncogene; 2014 Jul; 33(27):3538-49. PubMed ID: 24013224 [TBL] [Abstract][Full Text] [Related]
8. Discovery of a new pyrimidine synthesis inhibitor eradicating glioblastoma-initiating cells. Echizenya S; Ishii Y; Kitazawa S; Tanaka T; Matsuda S; Watanabe E; Umekawa M; Terasaka S; Houkin K; Hatta T; Natsume T; Maeda Y; Watanabe SI; Hagiwara S; Kondo T Neuro Oncol; 2020 Feb; 22(2):229-239. PubMed ID: 31499527 [TBL] [Abstract][Full Text] [Related]
9. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Katahira R; Ashihara H Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448 [TBL] [Abstract][Full Text] [Related]
10. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy. Ong HB; Sienkiewicz N; Wyllie S; Patterson S; Fairlamb AH Mol Microbiol; 2013 Oct; 90(2):443-55. PubMed ID: 23980694 [TBL] [Abstract][Full Text] [Related]
11. Pyrimidine biosynthetic pathway of Pseudomonas fluorescens. Chu CP; West TP J Gen Microbiol; 1990 May; 136(5):875-80. PubMed ID: 1974280 [TBL] [Abstract][Full Text] [Related]
12. Effect of carbon source on pyrimidine biosynthesis in Pseudomonas alcaligenes ATCC 14909. Santiago MF; West TP Microbiol Res; 2003; 158(2):195-9. PubMed ID: 12906394 [TBL] [Abstract][Full Text] [Related]
13. De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans. García-Bayona L; Garavito MF; Lozano GL; Vasquez JJ; Myers K; Fry WE; Bernal A; Zimmermann BH; Restrepo S Gene; 2014 Mar; 537(2):312-21. PubMed ID: 24361203 [TBL] [Abstract][Full Text] [Related]
14. Influence of carbon source on pyrimidine synthesis in Pseudomonas mendocina. Santiago MF; West TP J Basic Microbiol; 2003; 43(6):534-8. PubMed ID: 14625904 [TBL] [Abstract][Full Text] [Related]
15. Control of the pyrimidine biosynthetic pathway in Pseudomonas pseudoalcaligenes. West TP Arch Microbiol; 1994; 162(1-2):75-9. PubMed ID: 7916185 [TBL] [Abstract][Full Text] [Related]
16. Antipyrimidine effects of five different pyrimidine de novo synthesis inhibitors in three head and neck cancer cell lines. Peters GJ Nucleosides Nucleotides Nucleic Acids; 2018; 37(6):329-339. PubMed ID: 29723133 [TBL] [Abstract][Full Text] [Related]
17. Regulation of pyrimidine formation in Pseudomonas oryzihabitans. West TP J Basic Microbiol; 2007 Oct; 47(5):440-3. PubMed ID: 17910097 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of pyrimidine biosynthesis enzymes using the anticancer drug 5-fluorouracil in Caenorhabditis elegans. Kim S; Park DH; Kim TH; Hwang M; Shim J FEBS J; 2009 Sep; 276(17):4715-26. PubMed ID: 19645718 [TBL] [Abstract][Full Text] [Related]
19. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Gehlot P; Vyas VK Recent Pat Anticancer Drug Discov; 2024; 19(3):280-297. PubMed ID: 37070439 [TBL] [Abstract][Full Text] [Related]
20. Identification of DHODH as a therapeutic target in small cell lung cancer. Li L; Ng SR; Colón CI; Drapkin BJ; Hsu PP; Li Z; Nabel CS; Lewis CA; Romero R; Mercer KL; Bhutkar A; Phat S; Myers DT; Muzumdar MD; Westcott PMK; Beytagh MC; Farago AF; Vander Heiden MG; Dyson NJ; Jacks T Sci Transl Med; 2019 Nov; 11(517):. PubMed ID: 31694929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]