BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 33201910)

  • 1. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose.
    Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M
    PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous glucose and xylose utilization by an
    Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG
    Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 4. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica.
    Ryu S; Hipp J; Trinh CT
    Appl Environ Microbiol; 2016 Feb; 82(4):1334-1345. PubMed ID: 26682853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase.
    Andreevskaya M; Johansson P; Jääskeläinen E; Rämö T; Ritari J; Paulin L; Björkroth J; Auvinen P
    BMC Genomics; 2016 Aug; 17():539. PubMed ID: 27487841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli.
    Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X
    Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in
    Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ
    mSystems; 2018; 3(5):. PubMed ID: 30374459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons.
    Kang HY; Song S; Park C
    Mol Cells; 1998 Jun; 8(3):318-23. PubMed ID: 9666469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of arabinose and xylose metabolism in Escherichia coli.
    Desai TA; Rao CV
    Appl Environ Microbiol; 2010 Mar; 76(5):1524-32. PubMed ID: 20023096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts.
    Coradetti ST; Adamczyk PA; Liu D; Gao Y; Otoupal PB; Geiselman GM; Webb-Robertson BM; Burnet MC; Kim YM; Burnum-Johnson KE; Magnuson J; Gladden JM
    Microb Cell Fact; 2023 Aug; 22(1):144. PubMed ID: 37537586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose.
    Qiu Z; Wang G; Shao W; Cao L; Tan H; Shao S; Jin C; Xia J; He J; Liu X; He A; Han X; Xu J
    Bioresour Technol; 2024 May; 399():130631. PubMed ID: 38554760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global transcriptome response in Lactobacillus sakei during growth on ribose.
    McLeod A; Snipen L; Naterstad K; Axelsson L
    BMC Microbiol; 2011 Jun; 11():145. PubMed ID: 21702908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control of carbohydrate catabolism by the CcpA protein in the ruminal bacterium
    Zhao X; Zhang Y; He B; Han Y; Shen B; Zang Y; Wang H
    Appl Environ Microbiol; 2023 Oct; 89(10):e0047423. PubMed ID: 37823652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42.
    Dvořák P; Kováč J; de Lorenzo V
    Microb Biotechnol; 2020 Jul; 13(4):1273-1283. PubMed ID: 32363744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β -Glycoside Hydrolases.
    van Zanten GC; Sparding N; Majumder A; Lahtinen SJ; Svensson B; Jacobsen S
    Biomed Res Int; 2015; 2015():347216. PubMed ID: 25961012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Transcriptome Profile of the Oleaginous Yeast
    Aliyu H; Gorte O; Neumann A; Ochsenreither K
    J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Changes Induced by Deletion of Transcriptional Regulator
    Shin M; Kim SR
    Microorganisms; 2020 Sep; 8(10):. PubMed ID: 33003408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics reveals probable adaptations for xylose use in Thermoanaerobacterium saccharolyticum.
    Fiamenghi MB; Prodonoff JS; Borelli G; Carazzolle MF; Pereira GAG; José J
    Extremophiles; 2024 Jan; 28(1):9. PubMed ID: 38190047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of carbon catabolite repression for efficiently biotransformation of anthraquinone O-glucuronides by
    Tao C; Wang Q; Ji J; Zhou Z; Yue B; Zhang R; Jiang S; Yuan T
    Front Microbiol; 2024; 15():1393073. PubMed ID: 38690368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor.
    Park H; McGill SL; Arnold AD; Carlson RP
    Cell Mol Life Sci; 2020 Feb; 77(3):395-413. PubMed ID: 31768608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.