These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33201951)

  • 21. Wall-induced lateral migration in particle electrophoresis through a rectangular microchannel.
    Liang L; Ai Y; Zhu J; Qian S; Xuan X
    J Colloid Interface Sci; 2010 Jul; 347(1):142-6. PubMed ID: 20400083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.
    Fan LL; He XK; Han Y; Du L; Zhao L; Zhe J
    Biomicrofluidics; 2014 Mar; 8(2):024108. PubMed ID: 24738015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the internal structure of straight microchannels on inertial transport behavior of particles.
    Dong H; Huang L; Zhao L
    Heliyon; 2024 Apr; 10(8):e29577. PubMed ID: 38655341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observations of the near-wall accumulation of suspended particles due to shear and electroosmotic flow in opposite directions.
    Yee AJ; Yoda M
    Electrophoresis; 2021 Nov; 42(21-22):2215-2222. PubMed ID: 34587651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A flowing pair of particles in inertial microfluidics.
    Schaaf C; Rühle F; Stark H
    Soft Matter; 2019 Feb; 15(9):1988-1998. PubMed ID: 30714602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.
    Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D
    Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of microchannel structure and fluid properties on non-inertial particle migration.
    Maitri RV; De S; Koesen SP; Wyss HM; van der Schaaf J; Kuipers JAM; Padding JT; Peters EAJF
    Soft Matter; 2019 Mar; 15(12):2648-2656. PubMed ID: 30860218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping inertial migration in the cross section of a microfluidic channel with high-speed imaging.
    Zhou J; Peng Z; Papautsky I
    Microsyst Nanoeng; 2020; 6():105. PubMed ID: 34567714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fundamentals of inertial focusing in microchannels.
    Zhou J; Papautsky I
    Lab Chip; 2013 Mar; 13(6):1121-32. PubMed ID: 23353899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrokinetic instability in microchannel ferrofluid/water co-flows.
    Song L; Yu L; Zhou Y; Antao AR; Prabhakaran RA; Xuan X
    Sci Rep; 2017 Apr; 7():46510. PubMed ID: 28406228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheology of Colloidal Particles in a Confined Channel under Shear Flow by Brownian Dynamic Simulations.
    Valdez MA; Manero O
    J Colloid Interface Sci; 1997 Jun; 190(1):81-91. PubMed ID: 9241145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels.
    Park JS; Jung HI
    Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The lift force on a charged sphere that translates and rotates in an electrolyte.
    Khair AS; Balu B
    Electrophoresis; 2019 Sep; 40(18-19):2407-2414. PubMed ID: 30830969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects.
    Yuan D; Pan C; Zhang J; Yan S; Zhao Q; Alici G; Li W
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.