BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33202255)

  • 1. A CRISPR-Cas9 repressor for epigenetic silencing of KRAS.
    Liu J; Sun M; Cho KB; Gao X; Guo B
    Pharmacol Res; 2021 Feb; 164():105304. PubMed ID: 33202255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing.
    Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ
    Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective targeting of KRAS oncogenic alleles by CRISPR/Cas9 inhibits proliferation of cancer cells.
    Lee W; Lee JH; Jun S; Lee JH; Bang D
    Sci Rep; 2018 Aug; 8(1):11879. PubMed ID: 30089886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDAC1 and HDAC2 Double Knockout Triggers Cell Apoptosis in Advanced Thyroid Cancer.
    Lin CL; Tsai ML; Lin CY; Hsu KW; Hsieh WS; Chi WM; Huang LC; Lee CH
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Mediated Knock-Out of Kras
    Lentsch E; Li L; Pfeffer S; Ekici AB; Taher L; Pilarsky C; Grützmann R
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras
    McAndrews KM; Xiao F; Chronopoulos A; LeBleu VS; Kugeratski FG; Kalluri R
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34282051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Correction of Oncogenic KRAS and TP53 Mutations through CRISPR Base Editing.
    Sayed S; Sidorova OA; Hennig A; Augsburg M; Cortés Vesga CP; Abohawya M; Schmitt LT; Sürün D; Stange DE; Mircetic J; Buchholz F
    Cancer Res; 2022 Sep; 82(17):3002-3015. PubMed ID: 35802645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of KRas-ERK1/2 signaling drives the initiation and progression of glioma by suppressing the acetylation of histone H4 at lysine 16.
    Wei Y; Wang F; Sang B; Xu Z; Yang D
    Life Sci; 2019 May; 225():55-63. PubMed ID: 30946839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of siRNA targeting HDAC1 gene on proliferation, apoptosis, histone acetylation, and histone methylation in gastric cancer cells in vitro].
    Zhuang H; Ma X; Lai Y; Xu X; Wang X
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Feb; 34(2):246-50. PubMed ID: 24589606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment.
    Zhao X; Liu L; Lang J; Cheng K; Wang Y; Li X; Shi J; Wang Y; Nie G
    Cancer Lett; 2018 Sep; 431():171-181. PubMed ID: 29870774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel cell line generated using the CRISPR/Cas9 technology as universal quality control material for KRAS G12V mutation testing.
    Jia S; Zhang R; Lin G; Peng R; Gao P; Han Y; Fu Y; Ding J; Wu Q; Zhang K; Xie J; Li J
    J Clin Lab Anal; 2018 Jun; 32(5):e22391. PubMed ID: 29380513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner.
    O'Geen H; Bates SL; Carter SS; Nisson KA; Halmai J; Fink KD; Rhie SK; Farnham PJ; Segal DJ
    Epigenetics Chromatin; 2019 May; 12(1):26. PubMed ID: 31053162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions.
    Li Y; Mendiratta S; Ehrhardt K; Kashyap N; White MA; Bleris L
    PLoS One; 2016; 11(1):e0144970. PubMed ID: 26788852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells.
    Sen M; Wang X; Hamdan FH; Rapp J; Eggert J; Kosinsky RL; Wegwitz F; Kutschat AP; Younesi FS; Gaedcke J; Grade M; Hessmann E; Papantonis A; Strӧbel P; Johnsen SA
    Clin Epigenetics; 2019 Jun; 11(1):92. PubMed ID: 31217031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.