These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 33202305)

  • 1. Cellular reprogramming to model and study epigenetic alterations in cancer.
    Kim J
    Stem Cell Res; 2020 Dec; 49():102062. PubMed ID: 33202305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced pluripotent stem cell technology for dissecting the cancer epigenome.
    Semi K; Yamada Y
    Cancer Sci; 2015 Oct; 106(10):1251-6. PubMed ID: 26224327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular reprogramming and cancer development.
    Semi K; Matsuda Y; Ohnishi K; Yamada Y
    Int J Cancer; 2013 Mar; 132(6):1240-8. PubMed ID: 23180619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The causal relationship between epigenetic abnormality and cancer development: in vivo reprogramming and its future application.
    Yamada Y; Yamada Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(6):235-247. PubMed ID: 29887568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?
    Yilmazer A; de Lázaro I; Taheri H
    Cancer Lett; 2015 Dec; 369(1):1-8. PubMed ID: 26276716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic reprogramming during prostate cancer progression: A perspective from development.
    Goel S; Bhatia V; Biswas T; Ateeq B
    Semin Cancer Biol; 2022 Aug; 83():136-151. PubMed ID: 33545340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular reprogramming technology for dissecting cancer epigenome in vivo.
    Ito K; Yamada Y
    Epigenomics; 2017 Jul; 9(7):997-1011. PubMed ID: 28651445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis.
    Lichner Z; Mac-Way F; Yousef GM
    Eur Urol Focus; 2019 Mar; 5(2):250-261. PubMed ID: 28847686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic memory in the context of nuclear reprogramming and cancer.
    Halley-Stott RP; Gurdon JB
    Brief Funct Genomics; 2013 May; 12(3):164-73. PubMed ID: 23585580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the specific epigenetic alterations associated with chemo-resistance via reprogramming of cancer cells.
    Kim JJ; Rai R
    Med Hypotheses; 2015 Dec; 85(6):710-4. PubMed ID: 26527497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of reprogramming technology for cancer research].
    Yagi M; Semi K; Yamada Y
    Nihon Rinsho; 2015 May; 73(5):751-5. PubMed ID: 25985626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance.
    Fatma H; Maurya SK; Siddique HR
    Semin Cancer Biol; 2022 Aug; 83():166-176. PubMed ID: 33220458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PiRNAs link epigenetic modifications to reprogramming.
    Wang Y; Sun T; Wang K; Wang JX; Li PF
    Histol Histopathol; 2014 Dec; 29(12):1489-97. PubMed ID: 24760544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ride through the epigenetic landscape: aging reversal by reprogramming.
    de Lima Camillo LP; Quinlan RBA
    Geroscience; 2021 Apr; 43(2):463-485. PubMed ID: 33825176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and Restricting Cellular Plasticity.
    Wainwright EN; Scaffidi P
    Trends Cancer; 2017 May; 3(5):372-386. PubMed ID: 28718414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology.
    Sogabe Y; Seno H; Yamamoto T; Yamada Y
    Cancer Sci; 2018 Sep; 109(9):2641-2650. PubMed ID: 29989289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer epigenetics: from disruption of differentiation programs to the emergence of cancer stem cells.
    Scaffidi P; Misteli T
    Cold Spring Harb Symp Quant Biol; 2010; 75():251-8. PubMed ID: 21047903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer.
    Yamada Y; Haga H; Yamada Y
    Stem Cells Transl Med; 2014 Oct; 3(10):1182-7. PubMed ID: 25122691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The epigenetic-metabolic interplay in gliomagenesis.
    Phasaludeen B; Emerald BS; Ansari SA
    Open Biol; 2022 Apr; 12(4):210350. PubMed ID: 35382567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer epigenetics: an introduction.
    Kanwal R; Gupta K; Gupta S
    Methods Mol Biol; 2015; 1238():3-25. PubMed ID: 25421652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.