These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33202353)

  • 21. Host cell invasion by the opportunistic pathogen Toxoplasma gondii.
    Carruthers VB
    Acta Trop; 2002 Feb; 81(2):111-22. PubMed ID: 11801218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The coccidian parasites
    Hu X; Binns D; Reese ML
    J Biol Chem; 2017 Jun; 292(26):11009-11020. PubMed ID: 28487365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.
    Moreira-Souza AC; Marinho Y; Correa G; Santoro GF; Coutinho CM; Vommaro RC; Coutinho-Silva R
    PLoS One; 2015; 10(7):e0133502. PubMed ID: 26192447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Armed and dangerous: Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells.
    Carruthers VB
    Parasitol Int; 1999 Mar; 48(1):1-10. PubMed ID: 11269320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites.
    Al-Bajalan MMM; Xia D; Armstrong S; Randle N; Wastling JM
    Parasitol Res; 2017 Oct; 116(10):2707-2719. PubMed ID: 28803361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction.
    Martorelli Di Genova B; Wilson SK; Dubey JP; Knoll LJ
    PLoS Biol; 2019 Aug; 17(8):e3000364. PubMed ID: 31430281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolomic signature of mouse cerebral cortex following Toxoplasma gondii infection.
    Ma J; He JJ; Hou JL; Zhou CX; Zhang FK; Elsheikha HM; Zhu XQ
    Parasit Vectors; 2019 Jul; 12(1):373. PubMed ID: 31358041
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Portes J; Barrias E; Travassos R; Attias M; de Souza W
    Front Cell Infect Microbiol; 2020; 10():294. PubMed ID: 32714877
    [No Abstract]   [Full Text] [Related]  

  • 29. Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii--host cell interactions.
    Fauquenoy S; Morelle W; Hovasse A; Bednarczyk A; Slomianny C; Schaeffer C; Van Dorsselaer A; Tomavo S
    Mol Cell Proteomics; 2008 May; 7(5):891-910. PubMed ID: 18187410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages.
    Lüder CG; Algner M; Lang C; Bleicher N; Gross U
    Int J Parasitol; 2003 Jul; 33(8):833-44. PubMed ID: 12865083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail.
    Krishnamurthy S; Deng B; Del Rio R; Buchholz KR; Treeck M; Urban S; Boothroyd J; Lam YW; Ward GE
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions.
    Swierzy IJ; Händel U; Kaever A; Jarek M; Scharfe M; Schlüter D; Lüder CGK
    Sci Rep; 2017 Aug; 7(1):7229. PubMed ID: 28775382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of host autophagy machinery in controlling
    Besteiro S
    Virulence; 2019 Dec; 10(1):438-447. PubMed ID: 30269643
    [No Abstract]   [Full Text] [Related]  

  • 34.
    Mammari N; Halabi MA; Yaacoub S; Chlala H; Dardé ML; Courtioux B
    Biomed Res Int; 2019; 2019():6152489. PubMed ID: 31080827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyruvate Homeostasis as a Determinant of Parasite Growth and Metabolic Plasticity in Toxoplasma gondii.
    Xia N; Ye S; Liang X; Chen P; Zhou Y; Fang R; Zhao J; Gupta N; Yang S; Yuan J; Shen B
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186321
    [No Abstract]   [Full Text] [Related]  

  • 36. Comparison of splenocyte microRNA expression profiles of pigs during acute and chronic toxoplasmosis.
    Hou Z; Liu D; Su S; Wang L; Zhao Z; Ma Y; Li Q; Jia C; Xu J; Zhou Y; Tao J
    BMC Genomics; 2019 Jan; 20(1):97. PubMed ID: 30700253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subversion of innate and adaptive immune responses by Toxoplasma gondii.
    Lang C; Gross U; Lüder CG
    Parasitol Res; 2007 Jan; 100(2):191-203. PubMed ID: 17024357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The impact of Toxoplasma gondii infection on host cell signal transduction].
    Luo JX; Luo JX; Zhu GH; Wu YJ; Peng HJ
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2011 Oct; 29(5):378-84. PubMed ID: 24830203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxoplasma gondii infection induces the formation of host's nuclear granules containing poly(A)-binding proteins.
    Fischer K; Roberts M; Roscoe S; Avci Y; Ananvoranich S
    Can J Microbiol; 2018 Aug; 64(8):551-558. PubMed ID: 29658303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection.
    He JJ; Ma J; Elsheikha HM; Song HQ; Huang SY; Zhu XQ
    Parasit Vectors; 2016 Aug; 9(1):427. PubMed ID: 27488578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.