These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33202569)

  • 1. Optimal Frontier-Based Autonomous Exploration in Unconstructed Environment Using RGB-D Sensor.
    Lu L; Redondo C; Campoy P
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous Exploration of Unknown Indoor Environments for High-Quality Mapping Using Feature-Based RGB-D SLAM.
    Eldemiry A; Zou Y; Li Y; Wen CY; Chen W
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Path Planner for Autonomous Exploration of Underground Mines by Aerial Vehicles.
    Rubio-Sierra C; Domínguez D; Gonzalo J; Escapa A
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR.
    Faria M; Ferreira AS; Pérez-Leon H; Maza I; Viguria A
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological Frontier-Based Exploration and Map-Building Using Semantic Information.
    Gomez C; Hernandez AC; Barber R
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.
    Nam TH; Shim JH; Cho YI
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Exploration and Navigation with Optimal-RRT Planners for Ground Robots in Indoor Incidents.
    Pérez-Higueras N; Jardón A; Rodríguez Á; Balaguer C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APPA-3D: an autonomous 3D path planning algorithm for UAVs in unknown complex environments.
    Wang J; Zhao Z; Qu J; Chen X
    Sci Rep; 2024 Jan; 14(1):1231. PubMed ID: 38216719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Honeycomb Map: A Bioinspired Topological Map for Indoor Search and Rescue Unmanned Aerial Vehicles.
    da Rosa R; Aurelio Wehrmeister M; Brito T; Lima JL; Pereira AIPN
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-robot cooperative autonomous exploration via task allocation in terrestrial environments.
    Yan X; Zeng Z; He K; Hong H
    Front Neurorobot; 2023; 17():1179033. PubMed ID: 37342391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Strategy for Autonomous Exploration of Spatial Processes in Unknown Environments.
    Karolj V; Viseras A; Merino L; Shutin D
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Sensor-Space Lattice Planner for Real-Time Obstacle Avoidance.
    Martinez Rocamora B; Pereira GAS
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Informative Path Planning via Normalized Utility in Unknown Environments Exploration.
    Yu T; Deng B; Gui J; Zhu X; Yao W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary algorithm based offline/online path planner for UAV navigation.
    Nikolos IK; Valavanis KP; Tsourveloudis NC; Kostaras AN
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):898-912. PubMed ID: 18238242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Obstacle Detection and Tracking Using RGB-D Sensor Data in Dynamic Environments for Robotic Applications.
    Saha A; Dhara BC; Umer S; Yurii K; Alanazi JM; AlZubi AA
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities.
    de Oliveira GCR; de Carvalho KB; Brandão AS
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobile robots exploration through cnn-based reinforcement learning.
    Tai L; Liu M
    Robotics Biomim; 2016; 3(1):24. PubMed ID: 28066702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous Exploration and Map Construction of a Mobile Robot Based on the TGHM Algorithm.
    Liu S; Li S; Pang L; Hu J; Chen H; Zhang X
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches for Efficiently Detecting Frontier Cells in Robotics Exploration.
    Quin P; Nguyen DDK; Vu TL; Alempijevic A; Paul G
    Front Robot AI; 2021; 8():616470. PubMed ID: 33732732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.