BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 33202621)

  • 1. Cachexia, a Systemic Disease beyond Muscle Atrophy.
    Wyart E; Bindels LB; Mina E; Menga A; Stanga S; Porporato PE
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions.
    Siddiqui JA; Pothuraju R; Jain M; Batra SK; Nasser MW
    Biochim Biophys Acta Rev Cancer; 2020 Apr; 1873(2):188359. PubMed ID: 32222610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting.
    Dave S; Patel BM
    Fundam Clin Pharmacol; 2023 Dec; 37(6):1079-1091. PubMed ID: 37474262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.
    Yoshida T; Tabony AM; Galvez S; Mitch WE; Higashi Y; Sukhanov S; Delafontaine P
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2322-32. PubMed ID: 23769949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal models be translated to humans?
    Mueller TC; Bachmann J; Prokopchuk O; Friess H; Martignoni ME
    BMC Cancer; 2016 Feb; 16():75. PubMed ID: 26856534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms to explain wasting of muscle and fat in cancer cachexia.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired Muscle Regeneration in Cancer-Associated Cachexia.
    Arneson PC; Doles JD
    Trends Cancer; 2019 Oct; 5(10):579-582. PubMed ID: 31706505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study.
    Ebhardt HA; Degen S; Tadini V; Schilb A; Johns N; Greig CA; Fearon KCH; Aebersold R; Jacobi C
    J Cachexia Sarcopenia Muscle; 2017 Aug; 8(4):567-582. PubMed ID: 28296247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle atrophy is not always sarcopenia.
    Hepple RT
    J Appl Physiol (1985); 2012 Aug; 113(4):677-9. PubMed ID: 22518833
    [No Abstract]   [Full Text] [Related]  

  • 11. Exosomes in the pathogenesis and treatment of cancer-related cachexia.
    Ru Q; Chen L; Xu G; Wu Y
    J Transl Med; 2024 Apr; 22(1):408. PubMed ID: 38689293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T. gondii infection induces IL-1R dependent chronic cachexia and perivascular fibrosis in the liver and skeletal muscle.
    Melchor SJ; Hatter JA; Castillo ÉAL; Saunders CM; Byrnes KA; Sanders I; Abebayehu D; Barker TH; Ewald SE
    Sci Rep; 2020 Sep; 10(1):15724. PubMed ID: 32973293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic derangements of skeletal muscle from a murine model of glioma cachexia.
    Cui P; Shao W; Huang C; Wu CJ; Jiang B; Lin D
    Skelet Muscle; 2019 Jan; 9(1):3. PubMed ID: 30635036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling pathways controlling skeletal muscle mass.
    Egerman MA; Glass DJ
    Crit Rev Biochem Mol Biol; 2014; 49(1):59-68. PubMed ID: 24237131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cachexia in chronic cardiac disease. Ancient syndrome new idea?].
    Jastrezebska-Maj E; Mizia-Stec K; Kasprzyk M; Straczkowski M; Al-Jeabory M; Jastrzebska-Okoń K; Gasior Z
    Przegl Lek; 2006; 63(3):151-4. PubMed ID: 16967702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy.
    Mina E; Wyart E; Sartori R; Angelino E; Zaggia I; Rausch V; Maldotti M; Pagani A; Hsu MY; Friziero A; Sperti C; Menga A; Graziani A; Hirsch E; Oliviero S; Sandri M; Conti L; Kautz L; Silvestri L; Porporato PE
    Cell Rep Med; 2023 Dec; 4(12):101306. PubMed ID: 38052214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management.
    Siff T; Parajuli P; Razzaque MS; Atfi A
    Trends Endocrinol Metab; 2021 Jun; 32(6):382-402. PubMed ID: 33888422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle wasting: an overview of recent developments in basic research.
    Palus S; von Haehling S; Springer J
    Int J Cardiol; 2014 Oct; 176(3):640-4. PubMed ID: 25205489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contraction and nutrition interaction promotes anabolism in cachectic muscle.
    Di Girolamo FG; Guadagni M; Fiotti N; Situlin R; Biolo G
    Curr Opin Clin Nutr Metab Care; 2019 Jan; 22(1):60-67. PubMed ID: 30461449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The possible role of myostatin in skeletal muscle atrophy and cachexia.
    Jespersen J; Kjaer M; Schjerling P
    Scand J Med Sci Sports; 2006 Apr; 16(2):74-82. PubMed ID: 16533345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.