These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 33202861)

  • 1. Design Strategies of Conductive Hydrogel for Biomedical Applications.
    Xu J; Tsai YL; Hsu SH
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering.
    Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive hydrogels for biomedical applications.
    Lu H; Zhang N; Ma M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1568. PubMed ID: 31241253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications.
    Yang Y; Xu L; Wang J; Meng Q; Zhong S; Gao Y; Cui X
    Carbohydr Polym; 2022 May; 283():119161. PubMed ID: 35153030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications.
    Walker BW; Lara RP; Mogadam E; Yu CH; Kimball W; Annabi N
    Prog Polym Sci; 2019 May; 92():135-157. PubMed ID: 32831422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers.
    Nada AA; Eckstein Andicsová A; Mosnáček J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications.
    Khanmohammadi M; Dastjerdi MB; Ai A; Ahmadi A; Godarzi A; Rahimi A; Ai J
    Biomater Sci; 2018 May; 6(6):1286-1298. PubMed ID: 29714366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release.
    Qu J; Liang Y; Shi M; Guo B; Gao Y; Yin Z
    Int J Biol Macromol; 2019 Nov; 140():255-264. PubMed ID: 31421175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications.
    Panwar V; Babu A; Sharma A; Thomas J; Chopra V; Malik P; Rajput S; Mittal M; Guha R; Chattopadhyay N; Mandal D; Ghosh D
    J Mater Chem B; 2021 Aug; 9(31):6260-6270. PubMed ID: 34338263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Formation of 3D Conductive and Cell-Laden Graphene Hydrogel for Electrically Regulating Cellular Behavior.
    Chen X; Ranjan VD; Liu S; Liang YN; Lim JSK; Chen H; Hu X; Zhang Y
    Macromol Biosci; 2021 Apr; 21(4):e2000374. PubMed ID: 33620138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroconductive hydrogels: synthesis, characterization and biomedical applications.
    Guiseppi-Elie A
    Biomaterials; 2010 Apr; 31(10):2701-16. PubMed ID: 20060580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive Tough Hydrogel for Bioapplications.
    Javadi M; Gu Q; Naficy S; Farajikhah S; Crook JM; Wallace GG; Beirne S; Moulton SE
    Macromol Biosci; 2018 Feb; 18(2):. PubMed ID: 29235729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery.
    Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering.
    Steele AN; Stapleton LM; Farry JM; Lucian HJ; Paulsen MJ; Eskandari A; Hironaka CE; Thakore AD; Wang H; Yu AC; Chan D; Appel EA; Woo YJ
    Adv Healthc Mater; 2019 Mar; 8(5):e1801147. PubMed ID: 30714355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.