These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 33202861)

  • 41. Self-gelling electroactive hydrogels based on chitosan-aniline oligomers/agarose for neural tissue engineering with on-demand drug release.
    Bagheri B; Zarrintaj P; Surwase SS; Baheiraei N; Saeb MR; Mozafari M; Kim YC; Park OO
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110549. PubMed ID: 31610417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications.
    Ou Y; Tian M
    J Mater Chem B; 2021 Oct; 9(38):7955-7971. PubMed ID: 34611684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of conducting polymers to wound care and skin tissue engineering: A review.
    Talikowska M; Fu X; Lisak G
    Biosens Bioelectron; 2019 Jun; 135():50-63. PubMed ID: 30999241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications.
    Schöbel L; Boccaccini AR
    Acta Biomater; 2023 Oct; 169():45-65. PubMed ID: 37532132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specialty Tough Hydrogels and Their Biomedical Applications.
    Fuchs S; Shariati K; Ma M
    Adv Healthc Mater; 2020 Jan; 9(2):e1901396. PubMed ID: 31846228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alginate hydrogel dressings for advanced wound management.
    Zhang M; Zhao X
    Int J Biol Macromol; 2020 Nov; 162():1414-1428. PubMed ID: 32777428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering.
    Sasaki M; Karikkineth BC; Nagamine K; Kaji H; Torimitsu K; Nishizawa M
    Adv Healthc Mater; 2014 Nov; 3(11):1919-27. PubMed ID: 24912988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microengineered hydrogels for tissue engineering.
    Khademhosseini A; Langer R
    Biomaterials; 2007 Dec; 28(34):5087-92. PubMed ID: 17707502
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials.
    Prabaharan M; Mano JF
    Macromol Biosci; 2006 Dec; 6(12):991-1008. PubMed ID: 17128423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts.
    Gong HY; Park J; Kim W; Kim J; Lee JY; Koh WG
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47695-47706. PubMed ID: 31794187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanofibers for Biomedical and Healthcare Applications.
    Rasouli R; Barhoum A; Bechelany M; Dufresne A
    Macromol Biosci; 2019 Feb; 19(2):e1800256. PubMed ID: 30485660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Research status of self-healing hydrogel for wound management: A review.
    Zhang A; Liu Y; Qin D; Sun M; Wang T; Chen X
    Int J Biol Macromol; 2020 Dec; 164():2108-2123. PubMed ID: 32798548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment.
    Zhang J; Wu C; Xu Y; Chen J; Ning N; Yang Z; Guo Y; Hu X; Wang Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):40990-40999. PubMed ID: 32808753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review.
    Mohanty S; Swarup J; Priya S; Jain R; Singhvi G
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128348. PubMed ID: 38007021
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Research progress on anti-swelling hydrogels in biomedical field].
    Song C; Fu X; Tang L; Dong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):848-853. PubMed ID: 39218613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elastomeric conductive hybrid hydrogels with continuous conductive networks.
    Hu S; Zhou L; Tu L; Dai C; Fan L; Zhang K; Yao T; Chen J; Wang Z; Xing J; Fu R; Yu P; Tan G; Du J; Ning C
    J Mater Chem B; 2019 Apr; 7(15):2389-2397. PubMed ID: 32255117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration.
    Zanjanizadeh Ezazi N; Shahbazi MA; Shatalin YV; Nadal E; Mäkilä E; Salonen J; Kemell M; Correia A; Hirvonen J; Santos HA
    Int J Pharm; 2018 Jan; 536(1):241-250. PubMed ID: 29195917
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances.
    Hua D; Gao S; Zhang M; Ma W; Huang C
    Carbohydr Polym; 2020 Nov; 247():116743. PubMed ID: 32829862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.