These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33202896)

  • 1. Adsorptive-Oxidative Removal of Sulfides from Water by MnO
    Wilk ŁJ; Ciechanowska A; Kociołek-Balawejder E
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water.
    Jacukowicz-Sobala I; Wilk ŁJ; Drabent K; Kociołek-Balawejder E
    J Colloid Interface Sci; 2015 Dec; 460():154-63. PubMed ID: 26319332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorptive oxidation of sulfides catalysed by δ-MnO
    Edathil AA; Kannan P; Banat F
    Environ Pollut; 2020 Nov; 266(Pt 3):115218. PubMed ID: 32702604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of new materials by ethylene glycol modification and Al(OH)
    Zhang J; Zhu Q; Xing Z
    J Hazard Mater; 2020 May; 390():122049. PubMed ID: 32007862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nigella sativa seed based nanocomposite-MnO
    Siddiqui SI; Manzoor O; Mohsin M; Chaudhry SA
    Environ Res; 2019 Apr; 171():328-340. PubMed ID: 30711734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of MnO
    Dassanayake RS; Rajakaruna E; Moussa H; Abidi N
    Int J Biol Macromol; 2016 Dec; 93(Pt A):350-358. PubMed ID: 27586639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide.
    Jung B; Safan A; Batchelor B; Abdel-Wahab A
    Chemosphere; 2016 Nov; 163():351-358. PubMed ID: 27552695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism.
    Li A; Deng H; Jiang Y; Ye C
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative investigation of ZnO nanoparticle dissolution in the presence of δ-MnO
    Wan B; Hu Z; Yan Y; Liu F; Tan W; Feng X
    Environ Sci Pollut Res Int; 2020 May; 27(13):14751-14762. PubMed ID: 32052339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and adsorption performance of MnO2/PAC composite towards aqueous glyphosate.
    Cui H; Li Q; Qian Y; Zhang Q; Zhai J
    Environ Technol; 2012 Sep; 33(16-18):2049-56. PubMed ID: 23240199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of manganese dioxide (MnO
    Brindhadevi K; Vasantharaj S; Le QH; Devanesan S; Farhat K; Liu X
    Chemosphere; 2023 Dec; 343():140123. PubMed ID: 37690563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of a novel Fe
    Philippou K; Anastopoulos I; Dosche C; Pashalidis I
    J Environ Manage; 2019 Dec; 252():109677. PubMed ID: 31629175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.
    Zhu J; Baig SA; Sheng T; Lou Z; Wang Z; Xu X
    J Hazard Mater; 2015 Apr; 286():220-8. PubMed ID: 25585269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-oxidation of Elemental Mercury into Mercury Sulfide and Humic Acid-Bound Mercury by Sulfate Reduction for Hg
    Huang Z; Wei Z; Xiao X; Tang M; Li B; Ming S; Cheng X
    Environ Sci Technol; 2019 Nov; 53(21):12923-12934. PubMed ID: 31589025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of magnetically recoverable bentonite-Fe
    Jiang L; Ye Q; Chen J; Chen Z; Gu Y
    J Colloid Interface Sci; 2018 Mar; 513():748-759. PubMed ID: 29220689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of media coating on simultaneous manganese removal and remineralization of soft water via calcite contactor.
    Pourahmad H; Haddad M; Claveau-Mallet D; Barbeau B
    Water Res; 2019 Sep; 161():601-609. PubMed ID: 31238225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi.
    Ibrahim IM; Ali IM; Dheeb BI; Abas QA; Asmeit Ramizy ; Eisa MH; Aljameel AI
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():665-669. PubMed ID: 28183658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal synthesis of hierarchically structured birnessite-type MnO
    Jung KW; Lee SY; Lee YJ
    Bioresour Technol; 2018 Jul; 260():204-212. PubMed ID: 29626779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of MnO
    Zhao T; Yao Y; Wang M; Chen R; Yu Y; Wu F; Zhang C
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25369-25376. PubMed ID: 28677949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of strontium ions from aqueous solution by graphene oxide.
    Xing M; Zhuang S; Wang J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29669-29678. PubMed ID: 31401804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.