These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 33202948)
1. Diesel Particulate Matter 2.5 Induces Epithelial-to-Mesenchymal Transition and Upregulation of SARS-CoV-2 Receptor during Human Pluripotent Stem Cell-Derived Alveolar Organoid Development. Kim JH; Kim J; Kim WJ; Choi YH; Yang SR; Hong SH Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33202948 [TBL] [Abstract][Full Text] [Related]
2. Generation of Complete Multi-Cell Type Lung Organoids From Human Embryonic and Patient-Specific Induced Pluripotent Stem Cells for Infectious Disease Modeling and Therapeutics Validation. Leibel SL; McVicar RN; Winquist AM; Niles WD; Snyder EY Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e118. PubMed ID: 32640120 [TBL] [Abstract][Full Text] [Related]
3. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Stelzig KE; Canepa-Escaro F; Schiliro M; Berdnikovs S; Prakash YS; Chiarella SE Am J Physiol Lung Cell Mol Physiol; 2020 Jun; 318(6):L1280-L1281. PubMed ID: 32432918 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V Elife; 2020 May; 9():. PubMed ID: 32452762 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis reveals novel mechanisms of SARS-CoV-2 infection in human lung cells. Yang S; Wu S; Yu Z; Huang J; Zhong X; Liu X; Zhu H; Xiao L; Deng Q; Sun W Immun Inflamm Dis; 2020 Dec; 8(4):753-762. PubMed ID: 33124193 [TBL] [Abstract][Full Text] [Related]
6. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Yang L; Han Y; Nilsson-Payant BE; Gupta V; Wang P; Duan X; Tang X; Zhu J; Zhao Z; Jaffré F; Zhang T; Kim TW; Harschnitz O; Redmond D; Houghton S; Liu C; Naji A; Ciceri G; Guttikonda S; Bram Y; Nguyen DT; Cioffi M; Chandar V; Hoagland DA; Huang Y; Xiang J; Wang H; Lyden D; Borczuk A; Chen HJ; Studer L; Pan FC; Ho DD; tenOever BR; Evans T; Schwartz RE; Chen S Cell Stem Cell; 2020 Jul; 27(1):125-136.e7. PubMed ID: 32579880 [TBL] [Abstract][Full Text] [Related]
7. Particulate matter and SARS-CoV-2: A possible model of COVID-19 transmission. Tung NT; Cheng PC; Chi KH; Hsiao TC; Jones T; BéruBé K; Ho KF; Chuang HC Sci Total Environ; 2021 Jan; 750():141532. PubMed ID: 32858292 [TBL] [Abstract][Full Text] [Related]
8. SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis. Delpino MV; Quarleri J Front Cell Infect Microbiol; 2020; 10():340. PubMed ID: 32596170 [No Abstract] [Full Text] [Related]
9. Potential pathogenesis of severe acute respiratory syndrome coronavirus 2. Wu T; Zhang H; Hu E; Ma J Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 May; 45(5):591-597. PubMed ID: 32879112 [TBL] [Abstract][Full Text] [Related]
10. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
11. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
12. Synergistic effects of particulate matter and substrate stiffness on epithelial-to-mesenchymal transition. Barker TH; Dysart MM; Brown AC; Douglas AM; Fiore VF; Russell AG; Res Rep Health Eff Inst; 2014 Nov; (182):3-41. PubMed ID: 25669020 [TBL] [Abstract][Full Text] [Related]
13. Smoking-Mediated Upregulation of the Androgen Pathway Leads to Increased SARS-CoV-2 Susceptibility. Chakladar J; Shende N; Li WT; Rajasekaran M; Chang EY; Ongkeko WM Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32455539 [TBL] [Abstract][Full Text] [Related]
14. Role of neutrophil chemoattractant CXCL5 in SARS-CoV-2 infection-induced lung inflammatory innate immune response in an Liang Y; Li H; Li J; Yang ZN; Li JL; Zheng HW; Chen YL; Shi HJ; Guo L; Liu LD Zool Res; 2020 Nov; 41(6):621-631. PubMed ID: 33045777 [TBL] [Abstract][Full Text] [Related]
15. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? Abassi Z; Knaney Y; Karram T; Heyman SN Front Immunol; 2020; 11():1312. PubMed ID: 32582222 [TBL] [Abstract][Full Text] [Related]
16. Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19. Li HH; Liu CC; Hsu TW; Lin JH; Hsu JW; Li AF; Yeh YC; Hung SC; Hsu HS Part Fibre Toxicol; 2021 Mar; 18(1):11. PubMed ID: 33706759 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. Kong Q; Xiang Z; Wu Y; Gu Y; Guo J; Geng F Mol Cancer; 2020 Apr; 19(1):80. PubMed ID: 32345328 [TBL] [Abstract][Full Text] [Related]
18. SARS-CoV-2, More than a Respiratory Virus: Its Potential Role in Neuropathogenesis. Singal CMS; Jaiswal P; Seth P ACS Chem Neurosci; 2020 Jul; 11(13):1887-1899. PubMed ID: 32491829 [TBL] [Abstract][Full Text] [Related]
19. Exposure to particulate matter upregulates ACE2 and TMPRSS2 expression in the murine lung. Sagawa T; Tsujikawa T; Honda A; Miyasaka N; Tanaka M; Kida T; Hasegawa K; Okuda T; Kawahito Y; Takano H Environ Res; 2021 Apr; 195():110722. PubMed ID: 33422505 [TBL] [Abstract][Full Text] [Related]
20. The use of human iPSC-derived alveolar organoids to explore SARS-CoV-2 variant infections and host responses. Gandikota C; Vaddadi K; Sivasami P; Huang C; Liang Y; Pushparaj S; Deng X; Channappanava R; Metcalf JP; Liu L J Med Virol; 2024 Apr; 96(4):e29579. PubMed ID: 38572923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]