These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 33202954)

  • 21. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels.
    Rizwan M; Chan SW; Comeau PA; Willett TL; Yim EKF
    Biomed Mater; 2020 Oct; 15(6):065017. PubMed ID: 32640427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status.
    Das S; Jegadeesan JT; Basu B
    Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels.
    Young AT; White OC; Daniele MA
    Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing GelMA/PVA Interpenetrating Polymer Networks Scaffolds Mediated with CuO Nanoparticles for Angiogenesis.
    Hu Q; Lu R; Liu S; Liu Y; Gu Y; Zhang H
    Macromol Biosci; 2022 Oct; 22(10):e2200208. PubMed ID: 35904133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting.
    Mouser VH; Melchels FP; Visser J; Dhert WJ; Gawlitta D; Malda J
    Biofabrication; 2016 Jul; 8(3):035003. PubMed ID: 27431733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
    Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X
    Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips.
    Bhusal A; Dogan E; Nguyen HA; Labutina O; Nieto D; Khademhosseini A; Miri AK
    Biofabrication; 2021 Nov; 14(1):. PubMed ID: 34614486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration.
    Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Stavarache C; Ianchis R; Iovu H; Costache M
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies.
    Yilmaz H; Bedir T; Gursoy S; Kaya E; Senel I; Tinaz GB; Gunduz O; Ustundag CB
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38838701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic composite hydrogels of gelatin methacryloyl (GelMA) with supramolecular fibers for tissue engineering applications.
    Chalard AE; Porritt H; Lam Po Tang EJ; Taberner AJ; Winbo A; Ahmad AM; Fitremann J; Malmström J
    Biomater Adv; 2024 Oct; 163():213957. PubMed ID: 39024864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application.
    Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs.
    Lisboa ES; Serafim C; Santana W; Dos Santos VLS; de Albuquerque-Junior RLC; Chaud MV; Cardoso JC; Jain S; Severino P; Souto EB
    J Control Release; 2024 Jan; 365():617-639. PubMed ID: 38043727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucosamine-grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair.
    Suo H; Li L; Zhang C; Yin J; Xu K; Liu J; Fu J
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):990-999. PubMed ID: 31369700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair.
    Li H; Yin Y; Xiang Y; Liu H; Guo R
    Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.