These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 33202954)
41. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
42. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
43. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
45. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
46. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue. García-Lizarribar A; Fernández-Garibay X; Velasco-Mallorquí F; Castaño AG; Samitier J; Ramon-Azcon J Macromol Biosci; 2018 Oct; 18(10):e1800167. PubMed ID: 30156756 [TBL] [Abstract][Full Text] [Related]
47. Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Xie M; Gao Q; Zhao H; Nie J; Fu Z; Wang H; Chen L; Shao L; Fu J; Chen Z; He Y Small; 2019 Jan; 15(4):e1804216. PubMed ID: 30569632 [TBL] [Abstract][Full Text] [Related]
48. 3D Bioprinting of Reinforced Vessels by Dual-Cross-linked Biocompatible Hydrogels. Peng K; Liu X; Zhao H; Lu H; Lv F; Liu L; Huang Y; Wang S; Gu Q ACS Appl Bio Mater; 2021 May; 4(5):4549-4556. PubMed ID: 35006791 [TBL] [Abstract][Full Text] [Related]
49. High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro. Li XP; Qu KY; Zhang F; Jiang HN; Zhang N; Nihad C; Liu CM; Wu KH; Wang XW; Huang NP J Mater Chem B; 2020 Aug; 8(32):7213-7224. PubMed ID: 32638823 [TBL] [Abstract][Full Text] [Related]
50. 3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan. Wang X; Jiang J; Yuan C; Gu L; Zhang X; Yao Y; Shao L Biomater Sci; 2024 Jan; 12(3):738-747. PubMed ID: 38105707 [TBL] [Abstract][Full Text] [Related]
51. Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. Yoon HJ; Shin SR; Cha JM; Lee SH; Kim JH; Do JT; Song H; Bae H PLoS One; 2016; 11(10):e0163902. PubMed ID: 27723807 [TBL] [Abstract][Full Text] [Related]
52. Construction of dentin-on-a-chip based on microfluidic technology and tissue engineering. Zhang H; Li L; Wang S; Sun X; Luo C; Hou B J Dent; 2024 Jul; 146():105028. PubMed ID: 38719135 [TBL] [Abstract][Full Text] [Related]
53. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Sakr MA; Sakthivel K; Hossain T; Shin SR; Siddiqua S; Kim J; Kim K J Biomed Mater Res A; 2022 Mar; 110(3):708-724. PubMed ID: 34558808 [TBL] [Abstract][Full Text] [Related]
54. Effects of Encapsulated Cells on the Physical-Mechanical Properties and Microstructure of Gelatin Methacrylate Hydrogels. Krishnamoorthy S; Noorani B; Xu C Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614713 [TBL] [Abstract][Full Text] [Related]
56. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. Huang L; Chen X; Yang X; Zhang Y; Qiu X J Biomed Mater Res B Appl Biomater; 2024 May; 112(5):e35412. PubMed ID: 38701383 [TBL] [Abstract][Full Text] [Related]
57. 3D Printable Gelatin Methacryloyl (GelMA)-Dextran Aqueous Two-Phase System with Tunable Pores Structure and Size Enables Physiological Behavior of Embedded Cells In Vitro. Ben Messaoud G; Aveic S; Wachendoerfer M; Fischer H; Richtering W Small; 2023 Nov; 19(44):e2208089. PubMed ID: 37403299 [TBL] [Abstract][Full Text] [Related]
58. Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns. Rinoldi C; Costantini M; Kijeńska-Gawrońska E; Testa S; Fornetti E; Heljak M; Ćwiklińska M; Buda R; Baldi J; Cannata S; Guzowski J; Gargioli C; Khademhosseini A; Swieszkowski W Adv Healthc Mater; 2019 Apr; 8(7):e1801218. PubMed ID: 30725521 [TBL] [Abstract][Full Text] [Related]
59. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008 [TBL] [Abstract][Full Text] [Related]
60. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]