BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

824 related articles for article (PubMed ID: 33202963)

  • 1. Insights into Potential Targets for Therapeutic Intervention in Epilepsy.
    Zavala-Tecuapetla C; Cuellar-Herrera M; Luna-Munguia H
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments.
    Kaminski RM; Rogawski MA; Klitgaard H
    Neurotherapeutics; 2014 Apr; 11(2):385-400. PubMed ID: 24671870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mTOR inhibitors in epilepsy treatment.
    Sadowski K; Kotulska-Jóźwiak K; Jóźwiak S
    Pharmacol Rep; 2015 Jun; 67(3):636-46. PubMed ID: 25933981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies.
    Hodges SL; Lugo JN
    Epilepsy Res; 2018 Oct; 146():9-16. PubMed ID: 30053675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling to P-glycoprotein-A new therapeutic target to treat drug-resistant epilepsy?
    Hartz AM; Notenboom S; Bauer B
    Drug News Perspect; 2009 Sep; 22(7):393-7. PubMed ID: 19890496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond.
    Löscher W; Klein P
    CNS Drugs; 2021 Sep; 35(9):935-963. PubMed ID: 34145528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRPV1: a potential target for antiepileptogenesis.
    Fu M; Xie Z; Zuo H
    Med Hypotheses; 2009 Jul; 73(1):100-2. PubMed ID: 19328632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candidate drug targets for prevention or modification of epilepsy.
    Varvel NH; Jiang J; Dingledine R
    Annu Rev Pharmacol Toxicol; 2015; 55():229-47. PubMed ID: 25196047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy.
    Dossi E; Blauwblomme T; Moulard J; Chever O; Vasile F; Guinard E; Le Bert M; Couillin I; Pallud J; Capelle L; Huberfeld G; Rouach N
    Sci Transl Med; 2018 May; 10(443):. PubMed ID: 29848662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPA receptors in epilepsy and as targets for antiepileptic drugs.
    Rogawski MA; Donevan SD
    Adv Neurol; 1999; 79():947-63. PubMed ID: 10514878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brivaracetam: Rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment.
    Klitgaard H; Matagne A; Nicolas JM; Gillard M; Lamberty Y; De Ryck M; Kaminski RM; Leclercq K; Niespodziany I; Wolff C; Wood M; Hannestad J; Kervyn S; Kenda B
    Epilepsia; 2016 Apr; 57(4):538-48. PubMed ID: 26920914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies.
    van Vliet EA; Aronica E; Vezzani A; Ravizza T
    Neuropathol Appl Neurobiol; 2018 Feb; 44(1):91-111. PubMed ID: 28977690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy.
    Löscher W
    Epilepsy Res; 2002 Jun; 50(1-2):105-23. PubMed ID: 12151122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc signaling and epilepsy.
    Doboszewska U; Młyniec K; Wlaź A; Poleszak E; Nowak G; Wlaź P
    Pharmacol Ther; 2019 Jan; 193():156-177. PubMed ID: 30149099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the action mechanisms and targets of herbal anticonvulsants highlights opportunities for therapeutic engagement with refractory epilepsy.
    Tabassum S; Shorter S; Ovsepian SV
    J Mol Med (Berl); 2024 Jun; 102(6):761-771. PubMed ID: 38653825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epilepsy: key experimental therapeutics in early clinical development.
    Steriade C; French J; Devinsky O
    Expert Opin Investig Drugs; 2020 Apr; 29(4):373-383. PubMed ID: 32172604
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of the mTOR signaling pathway in epilepsy.
    Meng XF; Yu JT; Song JH; Chi S; Tan L
    J Neurol Sci; 2013 Sep; 332(1-2):4-15. PubMed ID: 23773767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel therapeutic targets for epilepsy intervention.
    Kambli L; Bhatt LK; Oza M; Prabhavalkar K
    Seizure; 2017 Oct; 51():27-34. PubMed ID: 28772199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options.
    Löscher W; Potschka H; Sisodiya SM; Vezzani A
    Pharmacol Rev; 2020 Jul; 72(3):606-638. PubMed ID: 32540959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy.
    Russo E; Citraro R; Donato G; Camastra C; Iuliano R; Cuzzocrea S; Constanti A; De Sarro G
    Neuropharmacology; 2013 Jun; 69():25-36. PubMed ID: 23092918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.