These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33203005)
21. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Kong BJ; Kim A; Park SN Carbohydr Polym; 2016 Aug; 147():473-481. PubMed ID: 27178954 [TBL] [Abstract][Full Text] [Related]
22. Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor. Lin X; Wang M; Zhao J; Wu X; Xie J; Yang J Carbohydr Polym; 2023 Mar; 304():120502. PubMed ID: 36641192 [TBL] [Abstract][Full Text] [Related]
23. Rechargeable Zn Eric H; Li H; Adulhakem Y E RSC Adv; 2019 Oct; 9(55):32047-32057. PubMed ID: 35530757 [TBL] [Abstract][Full Text] [Related]
24. Freeze-Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc-Ion Hybrid Supercapacitors. Zhu X; Ji C; Meng Q; Mi H; Yang Q; Li Z; Yang N; Qiu J Small; 2022 Apr; 18(16):e2200055. PubMed ID: 35274442 [TBL] [Abstract][Full Text] [Related]
25. Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor. Xun Z; Ni S; Gao Z; Zhang Y; Gu J; Huo P Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31744185 [TBL] [Abstract][Full Text] [Related]
26. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Sannino A; Madaghiele M; Conversano F; Mele G; Maffezzoli A; Netti PA; Ambrosio L; Nicolais L Biomacromolecules; 2004; 5(1):92-6. PubMed ID: 14715013 [TBL] [Abstract][Full Text] [Related]
27. Aqueous AlCl Li X; Wang Y; Tian Y; Wang Z; Zhang L; Ma J J Colloid Interface Sci; 2024 Sep; 670():311-322. PubMed ID: 38763027 [TBL] [Abstract][Full Text] [Related]
28. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Prontera CT; Gallo N; Giannuzzi R; Pugliese M; Primiceri V; Mariano F; Maggiore A; Gigli G; Sannino A; Salvatore L; Maiorano V Gels; 2023 Apr; 9(4):. PubMed ID: 37102922 [TBL] [Abstract][Full Text] [Related]
29. Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. Moon HC; Kim CH; Lodge TP; Frisbie CD ACS Appl Mater Interfaces; 2016 Mar; 8(9):6252-60. PubMed ID: 26867428 [TBL] [Abstract][Full Text] [Related]
30. Transparent Metal-Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices. Bai Z; Li R; Li K; Hou C; Zhang Q; Li Y; Wang H ACS Appl Mater Interfaces; 2020 Sep; 12(38):42955-42961. PubMed ID: 32869642 [TBL] [Abstract][Full Text] [Related]
32. A Na Del Agua I; Porcarelli L; Curto VF; Sanchez-Sanchez A; Ismailova E; Malliaras GG; Mecerreyes D J Mater Chem B; 2018 May; 6(18):2901-2906. PubMed ID: 32254243 [TBL] [Abstract][Full Text] [Related]
33. Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: Formation, in vitro release and bacteriostasis application. Sun N; Wang T; Yan X Carbohydr Polym; 2017 Sep; 172():49-59. PubMed ID: 28606547 [TBL] [Abstract][Full Text] [Related]
34. A Self-Healing Integrated All-in-One Zinc-Ion Battery. Huang S; Wan F; Bi S; Zhu J; Niu Z; Chen J Angew Chem Int Ed Engl; 2019 Mar; 58(13):4313-4317. PubMed ID: 30697965 [TBL] [Abstract][Full Text] [Related]
35. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834 [TBL] [Abstract][Full Text] [Related]
36. Transformation of Oil Palm Waste-Derived Cellulose into Solid Polymer Electrolytes: Investigating the Crucial Role of Plasticizers. Abouloula CN; Rizwan M; Selvanathan V; Yahya R; Althubeiti K; Alkhammash HI; Akhtaruzzaman M; Oueriagli A Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771242 [TBL] [Abstract][Full Text] [Related]
37. Solid Polymer Electrolytes Based on Gellan Gum and Ionic Liquid for Sustainable Electrochromic Devices. Alves R; Fidalgo-Marijuan A; Campos-Arias L; Gonçalves R; Silva MM; Del Campo FJ; Costa CM; Lanceros-Mendez S ACS Appl Mater Interfaces; 2022 Apr; 14(13):15494-15503. PubMed ID: 35324148 [TBL] [Abstract][Full Text] [Related]
38. Application of quasi solid electrolytes in organic based electrochromic devices: A mini review. Orimolade BO; Draper ER Chemistry; 2024 Apr; 30(23):e202303880. PubMed ID: 38224310 [TBL] [Abstract][Full Text] [Related]
39. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches. Kireeva N; Pervov VS Phys Chem Chem Phys; 2017 Aug; 19(31):20904-20918. PubMed ID: 28745741 [TBL] [Abstract][Full Text] [Related]
40. Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc-Air Batteries. Zhao N; Wu F; Xing Y; Qu W; Chen N; Shang Y; Yan M; Li Y; Li L; Chen R ACS Appl Mater Interfaces; 2019 May; 11(17):15537-15542. PubMed ID: 30901190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]